A067900 a(n) = 14*a(n-1) - a(n-2); a(0) = 0, a(1) = 8.
0, 8, 112, 1560, 21728, 302632, 4215120, 58709048, 817711552, 11389252680, 158631825968, 2209456310872, 30773756526240, 428623135056488, 5969950134264592, 83150678744647800, 1158139552290804608, 16130803053326616712, 224673103194281829360, 3129292641666618994328
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..870
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Programs
-
GAP
m:=7;; a:=[0,8];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
Magma
m:=7; I:=[0,8]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
-
Maple
a := proc(n) option remember: if n=0 then RETURN(0) fi: if n=1 then RETURN(8) fi: 14*a(n-1)-a(n-2): end: for n from 0 to 30 do printf(`%d,`,a(n)) od: seq( simplify(8*ChebyshevU(n-1, 7)), n=0..20); # G. C. Greubel, Dec 23 2019
-
Mathematica
LinearRecurrence[{14,-1}, {0,8}, 17] (* Jean-François Alcover, Sep 19 2017 *) 8*ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
-
PARI
vector(21, n, 8*polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
-
Sage
[8*chebyshev_U(n-1,7) for n in (0..20)] # G. C. Greubel, Dec 23 2019
Formula
G.f.: 8*x/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: 2*exp(7*x)*sinh(4*sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 12 2022
Comments