A067911 Product of gcd(k,n) for 1 <= k <= n.
1, 2, 3, 8, 5, 72, 7, 128, 81, 800, 11, 41472, 13, 6272, 30375, 32768, 17, 3359232, 19, 20480000, 750141, 247808, 23, 13759414272, 15625, 1384448, 1594323, 5035261952, 29, 30233088000000, 31, 2147483648, 235782657, 37879808
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- Johann Cigler, Some remarks on the power product expansion of the q-exponential series, arXiv:2006.06242 [math.CO], 2020.
- Gottfried Helms, A dream of a (number-) sequence, 2007-2009.
- L. Toth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1.
Crossrefs
Programs
-
Maple
with(numtheory): a := n -> mul(d^phi(n/d), d = divisors(n)): seq(a(i), i = 1..34); # Peter Luschny, Apr 07 2013
-
Mathematica
a[n_] := Product[d^EulerPhi[n/d], {d, Divisors[n]}]; Array[a, 34] (* Jean-François Alcover, Jun 03 2019 *)
-
PARI
a(n) = prod(k=1, n, gcd(k, n)); \\ Michel Marcus, Aug 23 2016
-
Sage
A067911 = lambda n: mul(gcd(n,i) for i in range(n)) [A067911(n) for n in (1..34)] # Peter Luschny, Apr 07 2013
Formula
a(n) = Product_{d|n} d^phi(n/d). - Vladeta Jovovic, Mar 08 2004
a(n) = n*A051190(n). - Peter Luschny, Apr 07 2013
a(n) = Product_{k=1..n} (n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
Extensions
Extended and edited by John W. Layman, Mar 14 2002