A067934 Let rep(k) = (10^k - 1)/9 be the k-th repunit number = 11111..1111 with k 1 digits, then sequence gives values of k such that rep(k) == 1 (mod k).
1, 2, 5, 7, 10, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 259
Offset: 1
Keywords
Examples
(10^11 - 1)/9 = 11111111111 == 1 (mod 11), so 11 is a term. We also have the congruence 10^11 == 10 (mod 9*11).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
{1}~Join~Select[Range[260], Mod[#2, #1] == 1 & @@ {#, (10^# - 1)/9} &] (* Michael De Vlieger, May 06 2018 *) fQ[n_] := PowerMod[10, n, 9 n] == 10; fQ[1] = True; Select[Range@260, fQ] (* Robert G. Wilson v, Jun 13 2018 *)
-
PARI
is(n)=n==1 || ((10^n-1)/9)%n==1 \\ Eric Chen, Jun 13 2018
Comments