cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A306090 G.f. A(x) satisfies: (1 + A(x))^A(x) = (1 + x)^x ; this sequence gives the numerators of the coefficients of x^n in g.f. A(x).

Original entry on oeis.org

-1, 1, -1, 1, -1, 143, -79, 8483, -2953, 391753, -77983, 20963473, -182269, 192178874539, -355629691849, 248105704337, -206101262483, 253628381647657, -222936799599583, 37078279922025269, -43439069697425189, 1498102421014867632661, -951127545430874789837, 375811649512893381826067, -18430176119809328448967
Offset: 1

Views

Author

Paul D. Hanna, Jun 21 2018

Keywords

Comments

The denominators of the coefficients in the g.f. A(x) are given by A306091.

Examples

			G.f.: A(x) = -x + 1/2*x^2 - 1/4*x^3 + 1/6*x^4 - 1/8*x^5 + 143/1440*x^6 - 79/960*x^7 + 8483/120960*x^8 - 2953/48384*x^9 + 391753/7257600*x^10 - 77983/1612800*x^11 + 20963473/479001600*x^12 - 182269/4561920*x^13 + 192178874539/5230697472000*x^14 - 355629691849/10461394944000*x^15 + 248105704337/7846046208000*x^16 - 206101262483/6974263296000*x^17 + 253628381647657/9146248151040000*x^18 - 222936799599583/8536498274304000*x^19 + 37078279922025269/1502674769756160000*x^20 + ... + A306090(n)/A306091(n)*x^n + ...
such that
(E.1) 1  =  1  +  (x + A(x))  +  (x + 2*A(x))*(2*x + A(x))/2!  +  (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3!  +  (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4!  +  (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...
(E.2) (1 + x)^p  =  1  +  (x + (1-p)*A(x))  +  (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2!  +  (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3!  +  (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...
(E.3) (1 + A(x))^m  =  1  +  ((1-m)*x + A(x))  +  ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2!  +  ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3!  +  ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...
FUNCTIONAL EQUATION.
The series A(x) satisfies:
(E.4) (1 + A(x))^A(x) = (1 + x)^x  =  1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...
GENERATING METHOD.
Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.
If we start with A = -x, and iterate
(E.5) A = (A + x*log(1 + x)/log(1 + A))/2
then A will converge to g.f. A(x).
SPECIFIC VALUES.
The series A(x) diverges at x = -1. Here we evaluate some specific values.
A(t) = 1 at t = A(1) = -0.653676637721419077935143447819113227...
A(t) = 1/2 at t = A(1/2) = -0.398639649051906807220717042823223882...
A(t) = 1/3 at t = A(1/3) = -0.285386940618446074866834432180324876...
A(t) = 1/4 at t = A(1/4) = -0.222107177448605275724475246853117193...
A(t) = -1/2 at t = A(-1/2) = 0.673256694764839886028076283033520406...
A(t) = -1/3 at t = A(-1/3) = 0.400909109269336524244889643832206510...
A(t) = -1/4 at t = A(-1/4) = 0.285959998501428938843181474481790362...
		

Crossrefs

Cf. A067948, A306091 (denominators), A306092, A304866.
Cf. A306066.

Programs

  • Mathematica
    nmax = 25; sol = {a[1] -> -1};
    Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[(1 + A[x])^A[x] - (1 + x)^x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax + 1}];
    sol /. Rule -> Set;
    a /@ Range[1, nmax] // Numerator (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    /* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */
    {a(n) = my(A = -x +x*O(x^n)); for(i=1,n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); numerator( polcoeff(A,n) )}
    for(n=1,40, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} A306090(n)/A306091(n) * x^n satisfies:
(1) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*A(x) = 1.
(2) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + (k - p)*A(x) = (1 + x)^p.
(3) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + k*A(x) = (1 + A(x))^m.
(4) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + (k - p)*A(x) = (1+x)^p * (1 + A(x))^m.
(5) A(A(x)) = x.
(6) (1 + A(x))^A(x) = (1 + x)^x.
(7) Sum_{n>=1} (-A(x))^(n+1) / n = x*log(1+x).
(8) Let F(x,y) = Series_Reversion( (exp(-x*y) - exp(-x))/(1-y) ), where the inverse is taken wrt x, and let F'(x,y) = d/dx F(x,y), then F'(x, A(x)/x) = 1 (derived from Peter Bala's g.f. for A067948).

A306091 G.f. A(x) satisfies: (1 + A(x))^A(x) = (1 + x)^x ; this sequence gives the denominators of the coefficients of x^n in g.f. A(x).

Original entry on oeis.org

1, 2, 4, 6, 8, 1440, 960, 120960, 48384, 7257600, 1612800, 479001600, 4561920, 5230697472000, 10461394944000, 7846046208000, 6974263296000, 9146248151040000, 8536498274304000, 1502674769756160000, 1857852442607616000, 67440043666656460800000, 44960029111104307200000, 18613452051997183180800000, 954536002666522214400000
Offset: 1

Views

Author

Paul D. Hanna, Jun 21 2018

Keywords

Comments

The numerators of the coefficients in g.f. A(x) are given by A306090.

Examples

			G.f.: A(x) = -x + 1/2*x^2 - 1/4*x^3 + 1/6*x^4 - 1/8*x^5 + 143/1440*x^6 - 79/960*x^7 + 8483/120960*x^8 - 2953/48384*x^9 + 391753/7257600*x^10 - 77983/1612800*x^11 + 20963473/479001600*x^12 - 182269/4561920*x^13 + 192178874539/5230697472000*x^14 - 355629691849/10461394944000*x^15 + 248105704337/7846046208000*x^16 - 206101262483/6974263296000*x^17 + 253628381647657/9146248151040000*x^18 - 222936799599583/8536498274304000*x^19 + 37078279922025269/1502674769756160000*x^20 + ... + A306090(n)/A306091(n)*x^n + ...
such that
(E.1) 1  =  1  +  (x + A(x))  +  (x + 2*A(x))*(2*x + A(x))/2!  +  (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3!  +  (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4!  +  (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...
(E.2) (1 + x)^p  =  1  +  (x + (1-p)*A(x))  +  (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2!  +  (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3!  +  (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...
(E.3) (1 + A(x))^m  =  1  +  ((1-m)*x + A(x))  +  ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2!  +  ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3!  +  ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...
FUNCTIONAL EQUATIONS.
The series A(x) satisfies:
(E.4) (1 + A(x))^A(x) = (1 + x)^x  =  1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...
GENERATING METHOD.
Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.
If we start with A = -x, and iterate
(E.5) A = (A + x*log(1 + x)/log(1 + A))/2
then A will converge to g.f. A(x).
		

Crossrefs

Cf. A306090 (numerators).

Programs

  • Mathematica
    nmax = 25; sol = {a[1] -> -1};
    Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[(1 + A[x])^A[x] - (1 + x)^x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax + 1}];
    sol /. Rule -> Set;
    a /@ Range[1, nmax] // Denominator (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    /* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */
    {a(n) = my(A = -x +x*O(x^n)); for(i=1,n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); denominator( polcoeff(A,n) )}

Formula

G.f. A(x) = Sum_{n>=0} A306090(n)/A306091(n) * x^n satisfies:
(1) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*A(x) = 1.
(2) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + (k - p)*A(x) = (1 + x)^p.
(3) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + k*A(x) = (1 + A(x))^m.
(4) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + (k - p)*A(x) = (1+x)^p * (1 + A(x))^m.
(5) A(A(x)) = x.
(6) (1 + A(x))^A(x) = (1 + x)^x.
(7) Sum_{n>=1} (-A(x))^(n+1) / n = x*log(1+x).
(8) Let F(x,y) = Series_Reversion( (exp(-x*y) - exp(-x))/(1-y) ), where the inverse is taken wrt x, and let F'(x,y) = d/dx F(x,y), then F'(x, A(x)/x) = 1 (derived from Peter Bala's g.f. for A067948).

A370832 Triangle read by rows: T(n,k) gives the number of parking functions of size n with k lucky cars. 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 8, 6, 0, 6, 37, 58, 24, 0, 24, 204, 504, 444, 120, 0, 120, 1318, 4553, 6388, 3708, 720, 0, 720, 9792, 44176, 87296, 81136, 33984, 5040, 0, 5040, 82332, 463860, 1203921, 1582236, 1064124, 341136, 40320, 0, 40320, 773280, 5270480, 17164320, 29724000, 28328480, 14602320, 3733920, 362880
Offset: 0

Views

Author

Peter Kagey, Mar 02 2024

Keywords

Comments

A car is called "lucky" if it gets its preferred parking spot.
Closely related to A220884.

Examples

			Table begins:
n\k|  0     1     2      3       4       5       6      7     8
---+-------------------------------------------------------------
 0 |  1
 1 |  0     1
 2 |  0     1     2
 3 |  0     2     8      6
 4 |  0     6    37     58      24
 5 |  0    24   204    504     444     120
 6 |  0   120  1318   4553    6388    3708     720
 7 |  0   720  9792  44176   87296   81136   33984   5040
 8 |  0  5040 82332 463860 1203921 1582236 1064124 341136 40320
      ...
		

Crossrefs

Row sums give A000272(n+1).
Cf. A000142 (main diagonal and column k=1 shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand(x*mul((n+1-k)+k*x, k=2..n)))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 26 2024
  • Mathematica
    row[n_] := (x (x - 1)^n Pochhammer[(n + x) / (x - 1), n]) / (n + x);
    Table[CoefficientList[Series[row[n], {x, 0, n}], x], {n, 0, 8}] // Flatten
    (* Peter Luschny, Jun 27 2024 *)

Formula

T(n, n) = n!.
T(n, 1) = (n-1)!.
Sum_{k=1..n} T(n, k) = (n+1)^(n-1).
T(n+1, n) = A002538(n).
G.f. for row n>0: x * Product_{j=2..n} (n + 1 + j*(x-1)).
T(n, k) = [x^k] (x*(x - 1)^n*Pochhammer((n + x) / (x - 1), n)) / (n + x). - Peter Luschny, Jun 27 2024

Extensions

Edited by Alois P. Heinz, Jun 26 2024

A363110 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 88, 306, 1158, 4730, 20722, 96776, 479340, 2507510, 13804014, 79718782, 481614806, 3036358968, 19932689952, 135981543762, 962319171782, 7053068549250, 53458038451082, 418440466421960, 3378290373259300, 28099682071640734, 240537280709926718
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2023

Keywords

Comments

Compare to the following identities, which hold for any fixed b and c:
(1) Sum_{n>=0} x^n * Product_{k=1..n} (b + k*x)/(1 + b*x + k*x^2) = (1 + b*x)/(1 - x^2).
(2) Sum_{n>=0} x^n * Product_{k=1..n} (k + c*x)/(1 + k*x + c*x^2) = (1 + c*x^2)/(1 - x).
(3) Sum_{n>=0} x^n * Product_{k=1..n} (b*k + c*k*x)/(1 + b*k*x + c*k*x^2) = 1/(1 - b*x - c*x^2).
Conjectures:
(1) a(6*n + k) == 0 (mod 4) for n > 0 when k = {0,5},
(2) a(6*n + k) == 2 (mod 4) for n > 0 when k = {1,2,3,4}.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 306*x^7 + 1158*x^8 + 4730*x^9 + 20722*x^10 + 96776*x^11 + 479340*x^12 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1 + 2*x)*(2 + x)/((1 + x + 2*x^2)*(1 + 2*x + x^2)) + x^3*(1 + 3*x)*(2 + 2*x)*(3 + x)/((1 + x + 3*x^2)*(1 + 2*x + 2*x^2)*(1 + 3*x + x^2)) + x^4*(1 + 4*x)*(2 + 3*x)*(3 + 2*x)*(4 + x)/((1 + x + 4*x^2)*(1 + 2*x + 3*x^2)*(1 + 3*x + 2*x^2)*(1 + 4*x + x^2)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( A = sum(m=0, n, x^m*prod(k=1, m, (k + (m-k+1)*x)/(1 + k*x + (m-k+1)*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be described by the following.
(1) Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).
(2) Sum_{n>=0} x^n * (Sum_{k=0..n} A067948(n,k) * x^k) / Product_{k=1..n} (1 + k*x + (n-k+1)*x^2).
Showing 1-4 of 4 results.