A067970 First differences of A014076, the odd nonprimes.
8, 6, 6, 4, 2, 6, 2, 4, 6, 4, 2, 4, 2, 6, 2, 4, 6, 2, 4, 4, 2, 4, 2, 2, 4, 6, 6, 4, 2, 2, 2, 2, 2, 4, 4, 2, 6, 2, 2, 2, 6, 2, 4, 2, 4, 4, 2, 4, 2, 6, 2, 2, 2, 6, 6, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 6, 4, 2, 6, 2, 2, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 6, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 6, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2
Offset: 1
Keywords
Links
- Jason Yuen, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a067970 n = a067970_list !! (n-1) a067970_list = zipWith (-) (tail a014076_list) a014076_list -- Reinhard Zumkeller, Sep 30 2011
-
Mathematica
a = Select[ Range[300], !PrimeQ[ # ] && !EvenQ[ # ] & ]; Table[ a[[n + 1]] - a[[n]], {n, 1, Length[a] - 1} ] With[{nn=401},Differences[Complement[Range[1,nn,2],Prime[Range[PrimePi [nn]]]]]] (* Harvey P. Dale, Feb 05 2012 *)
-
Python
from sympy import primepi, isprime def A067970(n): if n == 1: return 8 m, k = n-1, primepi(n) + n - 1 + (n>>1) while m != k: m, k = k, primepi(k) + n - 1 + (k>>1) for d in range(2,7,2): if not isprime(m+d): return d # Chai Wah Wu, Jul 31 2024
Formula
Extensions
Edited by Robert G. Wilson v, Feb 08 2002
Offset changed to 1 by Jason Yuen, Jan 08 2025
Comments