cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067988 Row sums of triangle A067330; also of triangle A067418.

Original entry on oeis.org

1, 3, 10, 25, 60, 133, 284, 585, 1175, 2310, 4464, 8502, 15995, 29775, 54920, 100487, 182556, 329555, 591550, 1056405, 1877821, 3323868, 5860800, 10297500, 18033925, 31487643, 54824854, 95211205, 164948700, 285121105, 491804144, 846631137, 1454746355, 2495275650
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

a(n) is the sum of the positions of the 0's in all Fibonacci binary words of length n+1. A Fibonacci binary word is a binary word having no 00 subword. Example: a(3)=25 because the Fibonacci binary words of length 4 are 1110, 1111, 1101, 1010, 1011, 0110, 0111 and 0101, the positions of the 0's being 4, 3, 2, 4, 2, 1, 4, 1, 1 and 3 (their sum is 25). - Emeric Deutsch, Jan 04 2009

Crossrefs

Programs

  • Maple
    a:=n->sum(binomial(n-j,j)*n*j/2,j=0..n): seq(a(n), n=2..30); # Zerinvary Lajos, Oct 19 2006
  • Mathematica
    Table[((n+2)((3n+5)Fibonacci[n+1]+(n+1)Fibonacci[n]))/10,{n,0,30}] (* Harvey P. Dale, Feb 02 2020 *)

Formula

a(n) = (n+2)*((3*n+5)*F(n+1)+(n+1)*F(n))/10, with F(n) := A000045(n) (Fibonacci).
G.f.: (1+x^2)/(1-x-x^2)^3.
Sum_{j=0..n} binomial(n-j,j)*n*j/2. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(x/2)*(5*(10 + 18*x + 7*x^2)*cosh(sqrt(5)*x/2) + sqrt(5)*(14 + 46*x + 15*x^2)*sinh(sqrt(5)*x/2))/50. - Stefano Spezia, Aug 30 2025

Extensions

a(29)-a(33) from Stefano Spezia, Aug 30 2025