A067988 Row sums of triangle A067330; also of triangle A067418.
1, 3, 10, 25, 60, 133, 284, 585, 1175, 2310, 4464, 8502, 15995, 29775, 54920, 100487, 182556, 329555, 591550, 1056405, 1877821, 3323868, 5860800, 10297500, 18033925, 31487643, 54824854, 95211205, 164948700, 285121105, 491804144, 846631137, 1454746355, 2495275650
Offset: 0
Programs
-
Maple
a:=n->sum(binomial(n-j,j)*n*j/2,j=0..n): seq(a(n), n=2..30); # Zerinvary Lajos, Oct 19 2006
-
Mathematica
Table[((n+2)((3n+5)Fibonacci[n+1]+(n+1)Fibonacci[n]))/10,{n,0,30}] (* Harvey P. Dale, Feb 02 2020 *)
Formula
a(n) = (n+2)*((3*n+5)*F(n+1)+(n+1)*F(n))/10, with F(n) := A000045(n) (Fibonacci).
G.f.: (1+x^2)/(1-x-x^2)^3.
Sum_{j=0..n} binomial(n-j,j)*n*j/2. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(x/2)*(5*(10 + 18*x + 7*x^2)*cosh(sqrt(5)*x/2) + sqrt(5)*(14 + 46*x + 15*x^2)*sinh(sqrt(5)*x/2))/50. - Stefano Spezia, Aug 30 2025
Extensions
a(29)-a(33) from Stefano Spezia, Aug 30 2025
Comments