A068016 Lonely non-twin primes: non-twins sandwiched between two pairs of twins.
23, 37, 67, 233, 277, 631, 1039, 1283, 1297, 1307, 1613, 1693, 1709, 2099, 2137, 2333, 2719, 2797, 3271, 3533, 3547, 3571, 3923, 4027, 4253, 4523, 4643, 4793, 5483, 5507, 5647, 6563, 7321, 8831, 8849, 9007, 9029, 10061, 10079, 10289, 10513, 12049, 13687
Offset: 1
Keywords
Examples
37 is in the sequence because it is adjacent to two pairs of twins (29,31 and 41,43). 47 is not because the primes adjacent to it are 43 and 53 and although 43 is a twin, 53 is not.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
- Brian Hopkins, Euler's Enumerations, Enumerative Combinatorics and Applications (2021) Vol. 1, No. 1, Article #S1H1.
Programs
-
Mathematica
PrimeNext[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k],k++ ];k]; PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k]; lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&PrimeQ[PrimePrev[p]-2]&&!PrimeQ[p+2]&&PrimeQ[PrimeNext[p]+2],AppendTo[lst,p]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 22 2009 *) m = 2000; #[[3]] & /@ Select[Partition[Prime[Range[7, m]], 5, 1], #[[2]] - #[[1]] == #[[5]] - #[[4]] == 2 &] (* Zak Seidov, Nov 25 2012 *)
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Dec 04 2009