A068019 Composite n such that both 1 + phi(n) and -1 + phi(n) are primes, i.e., phi(n) is the middle term between twin primes (A014574).
8, 9, 10, 12, 14, 18, 21, 26, 27, 28, 36, 38, 42, 49, 54, 62, 77, 86, 91, 93, 95, 98, 99, 111, 117, 122, 124, 133, 135, 146, 148, 152, 154, 171, 182, 186, 189, 190, 198, 206, 209, 216, 217, 218, 221, 222, 228, 234, 252, 266, 270, 278, 279, 287, 291, 297, 302
Offset: 1
Keywords
Examples
n = 21, 26, 28, 36, 42 give phi(n)=12; the corresponding twin primes are {11,13}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
GAP
Filtered([1..310],n->not IsPrime(n) and IsPrime(1+Phi(n)) and IsPrime(-1+Phi(n))); # Muniru A Asiru, Dec 08 2018
-
Mathematica
Do[s=-1+EulerPhi[n]; s1=1+EulerPhi[n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[n]], {n, 1, 2000}] (* Second program: *) Select[Range[4, 302], And[CompositeQ@ #, AllTrue[EulerPhi@ # + {-1, 1}, PrimeQ]] &] (* Michael De Vlieger, Dec 08 2018 *)
-
PARI
isok(n) = !isprime(n) && isprime(eulerphi(n)+1) && isprime(eulerphi(n)-1); \\ Michel Marcus, Dec 08 2018
Comments