A068101 a(n) = Sum_{k|n, k<=sqrt(n)} mu(k) where mu(k) is the Moebius function and the sum is over the positive divisors k of n with k <= sqrt(n).
1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, -1, 1, 0, -1, 0, 0, 0, 1, 0, 0, -2, 1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A086956.
Programs
-
Haskell
a068101 = sum . map a008683 . a161906_row -- Reinhard Zumkeller, Jul 30 2013
-
Mathematica
Table[DivisorSum[n, MoebiusMu, # <= Sqrt[n] &], {n, 103}] (* Michael De Vlieger, Sep 24 2017 *)
-
PARI
a(n) = sumdiv(n, k, (k<=sqrt(n))*moebius(k)); \\ Michel Marcus, Jan 03 2017
Formula
G.f.: Sum_{k>=1} mu(k)*x^(k^2)/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017