cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068101 a(n) = Sum_{k|n, k<=sqrt(n)} mu(k) where mu(k) is the Moebius function and the sum is over the positive divisors k of n with k <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, -1, 1, 0, -1, 0, 0, 0, 1, 0, 0, -2, 1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Leroy Quet, Mar 22 2002

Keywords

Crossrefs

Cf. A086956.

Programs

  • Haskell
    a068101 = sum . map a008683 . a161906_row
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Mathematica
    Table[DivisorSum[n, MoebiusMu, # <= Sqrt[n] &], {n, 103}] (* Michael De Vlieger, Sep 24 2017 *)
  • PARI
    a(n) = sumdiv(n, k, (k<=sqrt(n))*moebius(k)); \\ Michel Marcus, Jan 03 2017

Formula

a(n) = Sum_{k=1..A038548(n)} A008683(A161906(n,k)). - Reinhard Zumkeller, Jul 30 2013
G.f.: Sum_{k>=1} mu(k)*x^(k^2)/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017