cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A068146 Primes of the form a^a - b^b.

Original entry on oeis.org

3, 23, 229, 3121, 776887, 16774091, 275311670611, 302875106545597, 437893890380859119, 808793517812627212561, 827240252970236315921, 1978419655651397488675723, 20880467999847900922348207352551
Offset: 1

Views

Author

Amarnath Murthy, Feb 23 2002

Keywords

Examples

			229 = 4^4 - 3^3 is a prime.
		

Crossrefs

Cf. A068145.

Programs

  • Mathematica
    Select[ Union[ Flatten[ Table[a^a - b^b, {a, 1, 40}, {b, 1, a - 1} ]]], PrimeQ ]
  • PARI
    v=[]; for(a=2, 400, forstep(b=a-1, 1, -2, if(ispseudoprime(t=a^a-b^b), v=concat(v,t)))); v \\ Charles R Greathouse IV, Feb 14 2011

Formula

The sum of the reciprocals converges to 0.38150016336280165719931278557192073226416041392427864458688292865... - Cino Hilliard, Dec 15 2002

Extensions

Edited and extended by Robert G. Wilson v and Sascha Kurz, Mar 01 2002

A066846 Numbers of the form a^a + b^b, a >= b > 0.

Original entry on oeis.org

2, 5, 8, 28, 31, 54, 257, 260, 283, 512, 3126, 3129, 3152, 3381, 6250, 46657, 46660, 46683, 46912, 49781, 93312, 823544, 823547, 823570, 823799, 826668, 870199, 1647086, 16777217, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 33554432
Offset: 0

Views

Author

Leroy Quet, Jan 20 2002

Keywords

Examples

			28 is included because 28 = 1^1 + 3^3.
		

Crossrefs

Cf. A068145: primes of the form a^a + b^b.

Programs

  • Mathematica
    nn = 10; Select[Union[Flatten[Table[a^a + b^b, {a, nn}, {b, a, nn}]]], # <= nn^nn + 1 &] (* T. D. Noe, Nov 15 2012 *)

Extensions

Name improved by Alex Ratushnyak, Oct 26 2012

A133664 Primes of the form a^a + b^b + c^c + d^d.

Original entry on oeis.org

7, 13, 59, 311, 337, 769, 3137, 3389, 9631, 46691, 49783, 49789, 139969, 143093, 823601, 826673, 826699, 870253, 916859, 16777729, 16780369, 16780601, 16823903, 16827001, 17600761, 17600813, 18427427, 33557561, 33604213, 34378231
Offset: 1

Views

Author

Jonathan Vos Post, Dec 28 2007

Keywords

Examples

			a(1) = 7 = 2^2 + 1^1 + 1^1 + 1^1 = 4 + 1 + 1 + 1 = 7.
a(2) = 13 = 4 + 4 + 4 + 1.
a(3) = 59 = 27 + 27 + 4 + 1.
a(4) = 311 = 256 + 27 + 27 + 1.
a(5) = 337 = 256 + 27 + 27 + 27.
a(6) = 769 = 256 + 256 + 256 + 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}]]], PrimeQ]
  • PARI
    v=[];for(a=1,100, for(b=1,a, for(c=1,b, for(d=1,c, if(ispseudoprime(t=a^a+b^b+c^c+d^d),v=concat(v,t)))))); v \\ Charles R Greathouse IV, Feb 15 2011

Formula

A000040 INTERSECTION {A000312(a) + A000312(b) + A000312(c) + A000312(d)}.

A218346 Numbers of the form a^a + b^b, with a > b > 0.

Original entry on oeis.org

5, 28, 31, 257, 260, 283, 3126, 3129, 3152, 3381, 46657, 46660, 46683, 46912, 49781, 823544, 823547, 823570, 823799, 826668, 870199, 16777217, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420490, 387420493, 387420516, 387420745, 387423614, 387467145
Offset: 1

Views

Author

Alex Ratushnyak, Oct 26 2012

Keywords

Comments

Subsequence of A066846.

Examples

			a(1) = 2^2 + 1^1 = 5,
a(2) = 3^3 + 1^1 = 28,
a(3) = 2^2 + 3^3 = 31.
		

Crossrefs

Cf. A068145: primes of the form a^a + b^b.

Programs

  • Maple
    N:= 10^12: # for terms <= N
    S:= NULL:
    for m from 1 do v:= m^m; if v > N then break fi; S:= S,v od:
    sort(convert(select(`<=`,{seq(seq(S[i]+S[j],j=i+1..m-1),i=1..m-1)},N),list)); # Robert Israel, Aug 10 2020
  • Mathematica
    nn = 10; Select[Union[Flatten[Table[a^a + b^b, {a, nn}, {b, a + 1, nn}]]], # <= nn^nn + 1 &] (* T. D. Noe, Nov 15 2012 *)
  • Python
    from itertools import count, takewhile
    def aupto(lim):
      pows = list(takewhile(lambda x: x < lim, (i**i for i in count(1))))
      sums = (aa+bb for i, bb in enumerate(pows) for aa in pows[i+1:])
      return sorted(set(s for s in sums if s <= lim))
    print(aupto(387467145))  # Michael S. Branicky, May 28 2021

A133663 Primes of the form a^a + b^b + c^c.

Original entry on oeis.org

3, 29, 3637, 6277, 46687, 826669, 16777499, 16780597, 404197709, 775664521, 10000003129, 10387420493, 285311673737, 305311670611, 8916100448513, 8916487869001, 8926101271799, 17832200896513, 17832200899637
Offset: 1

Views

Author

Jonathan Vos Post, Dec 28 2007

Keywords

Examples

			a(1) = 3 = 1 + 1 + 1 is prime.
a(2) = 29 = 27 + 1 + 1 is prime.
a(3) = 3637 = 3125 + 256 + 256 is prime.
a(4) = 6277 = 3125 + 3125 + 27 is prime.
a(5) = 46687 = 46656 + 27 + 4 is prime.
a(6) = 826669 = 823543 + 3125 + 1 is prime.
a(7) = 16777499 = 16777216 + 256 + 27 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ a^a + b^b + c^c, {a, 1, 40}, {b, 1, a}, {c, 1, b}]]], PrimeQ]
  • PARI
    v=[];for(a=1,386, for(b=1,a, for(c=1,b, if(ispseudoprime(t=a^a+b^b+c^c),v=concat(v,t))))); v \\ Charles R Greathouse IV, Feb 18 2011

Formula

A000040 INTERSECTION {A000312(i) + A000312(j) + A000312(k)}.

A136292 Primes of the form a^a + b^b + c^c + d^d + e^e.

Original entry on oeis.org

5, 11, 17, 31, 37, 43, 83, 89, 109, 263, 269, 521, 541, 547, 593, 773, 1051, 3181, 3187, 3413, 3691, 6763, 9377, 9403, 9887, 12527, 46663, 46993, 49787, 50549, 52937, 53189, 93851, 96697, 99563, 139999, 823547, 823553, 823573, 823651, 823831
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2008

Keywords

Examples

			a(1) = 5 = 1^1 + 1^1 + 1^1 + 1^1 + 1^1.
a(2) = 11 = 1^1 + 1^1 + 1^1 + 2^2 + 2^2.
a(3) = 17 = 1^1 + 2^2 + 2^2 + 2^2 + 2^2.
a(4) = 31 = 1^1 + 1^1 + 1^1 + 1^1 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d + e^e, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}, {e, 1, d}]]], PrimeQ]
  • PARI
    v=[];for(a=1,50, for(b=1,a, for(c=1,b, for(d=1,c, for(e=1,d, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e),v=concat(v,t))))))); v \\ Charles R Greathouse IV, Feb 15 2011

Formula

A000040 INTERSECTION {A000312(a) + A000312(b) + A000312(c) + A000312(d) + A000312(e)}.

A218347 Numbers of the form a^a + b^b, a>=b>=0.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 27, 28, 31, 54, 256, 257, 260, 283, 512, 3125, 3126, 3129, 3152, 3381, 6250, 46656, 46657, 46660, 46683, 46912, 49781, 93312, 823543, 823544, 823547, 823570, 823799, 826668, 870199, 1647086, 16777216, 16777217, 16777220, 16777243, 16777472, 16780341
Offset: 1

Views

Author

Alex Ratushnyak, Oct 26 2012

Keywords

Comments

The subsequence of primes is A068145.

Crossrefs

A136294 Primes of the form a^a + b^b + c^c + d^d + e^e + f^f.

Original entry on oeis.org

41, 47, 61, 67, 113, 139, 293, 313, 571, 797, 823, 1307, 3191, 3391, 3463, 3643, 3947, 4153, 6257, 6263, 6793, 7019, 9433, 12757, 15629, 15881, 46687, 46919, 46997, 47681, 49811, 49843, 50069, 50321, 53419, 56039, 56543, 59183, 93319
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2008

Keywords

Examples

			a(1) = 41 = 1^1 + 1^1 + 2^2 + 2^2 + 2^2 + 3^3.
a(2) = 47 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^3.
a(3) = 61 = 1^1 + 1^1 + 1^1 + 2^2 + 3^3 + 3^3.
a(4) = 67 = 1^1 + 2^2 + 2^2 + 2^2 + 3^3 + 3^3.
a(5) = 113 = 1^1 + 2^2 + 3^3 + 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d + e^e + f^f, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}, {e, 1, d}, {f, 1, e}]]], PrimeQ]
  • PARI
    v=[]; for(a=1, 30, for(b=1, a, for(c=1, b, for(d=1, c, for(e=1, d, for(f=1, e, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e+f^f), v=concat(v, t)))))))); #v \\ Charles R Greathouse IV, Feb 15 2011

Formula

A000040 INTERSECTION {A000312(a) + A000312(b) + A000312(c) + A000312(d) + A000312(e) + A000312(f)}.

A140052 Indices m such that A114850(m)+A114850(k) is prime for some k

Original entry on oeis.org

6, 9, 9, 19, 20, 25, 33, 38, 40, 59, 69, 76, 99, 111, 126, 141, 147, 167, 188, 202, 211, 211, 220, 238, 263, 264, 279, 284, 297, 329, 336, 354, 407, 407, 407, 410, 426, 540, 568, 652, 683, 696, 769, 780, 948, 951
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2008

Keywords

Comments

The associated primes b(n), which grow too quickly for many to be given as a sequence themselves, are {primes of the form A114850(a) + A114850(b)} = {primes of the form A114850(a) + A114850(b)} and begin as follows. b(1) = 437893890380859631 = 256 + 437893890380859375 = 4^4 + 15^15 = semiprime(1)^semiprime(1) + semiprime(6)^semiprime(6).
b(2) = 88817841970012523233890533447265881 = 256 + 88817841970012523233890533447265625 = 4^4 + 25^25 = semiprime(1)^semiprime(1) + semiprime(9)^semiprime(9).
b(3) = 46656 + 88817841970012523233890533447265625 = 6^6 + 24^25 = semiprime(2)^semiprime(2) + semiprime(9)^semiprime(9). This is to A068145 "Primes of the form a^a + b^b" as A001358 semiprimes is to A000040 primes; and as A114850 "(n-th semiprime)^(n-th semiprime)" is to A051674 "(n-th prime)^(n-th prime)."
M. F. Hasler gave the present definition which allows us to list merely the indices, which in the 3 examples above, are [6, 1],[9, 1],[9, 2]. The first 13 [m,k] value pairs are (as found by M. F. Hasler as an extension) are [6, 1], [9, 1], [9, 2], [19, 5], [20, 8], [25, 7], [33, 11], [38, 6], [40, 33], [59, 14], [69, 62], [76, 57], [99, 22]. Hence our sequence begins a(1) = 6, a(2) = 9, a(3) = 9. For the sequence of corresponding k values {1, 1, 2, 5, 8, ...}, see A140053.

Examples

			a(1) = 6 because semiprime(6)^semiprime(6) + semiprime(1)^semiprime(1) = 15^15 + 4^4 = 437893890380859375 + 256 = 437893890380859631 is prime.
		

Crossrefs

Programs

Formula

A001358(a(n))^A001358(a(n)) + A001358(A140053(n))^A001358(A140053(n)) is prime.

Extensions

a(14)-a(46) from Donovan Johnson, Nov 11 2008

A140053 Indices k such that A114850(m)+A114850(k) is prime for some m>k.

Original entry on oeis.org

1, 1, 2, 5, 8, 7, 11, 6, 33, 14, 62, 57, 22, 7, 86, 61, 28, 70, 66, 134, 77, 131, 107, 58, 161, 252, 240, 52, 155, 32, 152, 322, 167, 200, 284, 258, 28, 173, 95, 563, 369, 57, 58, 126, 113, 369
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2008

Keywords

Comments

The associated primes b(n), which grow too quickly for many to be given as a sequence themselves, are {primes of the form A114850(a) + A114850(b)} = {primes of the form A114850(a) + A114850(b)} and begin as follows. b(1) = 437893890380859631 = 256 + 437893890380859375 = 4^4 + 15^15 = semiprime(1)^semiprime(1) + semiprime(6)^semiprime(6).
b(2) = 88817841970012523233890533447265881 = 256 + 88817841970012523233890533447265625 = 4^4 + 25^25 = semiprime(1)^semiprime(1) + semiprime(9)^semiprime(9).
b(3) = 46656 + 88817841970012523233890533447265625 = 6^6 + 24^25 = semiprime(2)^semiprime(2) + semiprime(9)^semiprime(9). This is to A068145 "Primes of the form a^a + b^b" as A001358 semiprimes is to A000040 primes; and as A114850 "(n-th semiprime)^(n-th semiprime)" is to A051674 "(n-th prime)^(n-th prime)."
M. F. Hasler gave the present definition which allows us to list merely the indices, which in the 3 examples above, are [6, 1],[9, 1],[9, 2]. The first 13 [m,k] value pairs are (as found by M. F. Hasler as an extension) are [6, 1], [9, 1], [9, 2], [19, 5], [20, 8], [25, 7], [33, 11], [38, 6], [40, 33], [59, 14], [69, 62], [76, 57], [99, 22]. Hence our sequence begins a(1) = 6, a(2) = 9, a(3) = 9. For the sequence of corresponding k values {6, 9, 9, 19, 20, ...}, see A140052.

Examples

			a(1) = 1 because semiprime(6)^semiprime(6) + semiprime(1)^semiprime(1) = 15^15 + 4^4 = 437893890380859375 + 256 = 437893890380859631 is prime.
		

Crossrefs

Programs

Formula

A001358(a(n))^A001358(a(n)) + A001358(A140052(n))^A001358(A140052(n)) is prime.

Extensions

a(14)-a(46) from Donovan Johnson, Nov 11 2008
Showing 1-10 of 11 results. Next