cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068215 Denominator of Borwein integral of order 2n+1, as defined by Weisstein.

Original entry on oeis.org

2, 6, 30, 210, 1890, 20790, 270270, 1896516717212415135141110350293750000, 1220462921565155916674902677397230198502690752000000000
Offset: 0

Views

Author

Eric W. Weisstein, Feb 21 2002

Keywords

Crossrefs

Cf. A068214 (supposed numerators), A144616 (denominators of the conventional Borwein integrals).

Programs

  • Mathematica
    i[n_] := Times@@(Sin[x/# ]&/@Range[1, n, 2])/x^((n+1)/2)/Pi; Denominator[Table[Integrate[i[n], {x, 0, \[Infinity]}], {n, 1, 19, 2}]]

Formula

a(n) = A144616(n+1)*A097801(n+1) [assuming that the numerators are really A068214]. - Andrey Zabolotskiy, Oct 18 2016

Extensions

Name edited by Andrey Zabolotskiy, Dec 14 2024

A144616 Denominator of n-th Borwein integral divided by Pi/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 467807924720320453655260875000, 17708695394150597647449176493763755467520000000, 8096800377970649960875919032857634716820075076062381575000000, 2051564503724359411435325207087513361930253427318374450656960000000000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2009, based on email from Bill Gosper

Keywords

Comments

See comments in A068214.

Crossrefs

Cf. A068214 (numerators).

Programs

  • Mathematica
    (Mma 7.0) Table[2/Pi*Integrate[Product[Sinc[x/k], {k, 1, 2*n + 1, 2}], {x, 0, Infinity }], {n, 0, 7}]

Extensions

a(9)-a(11) from Robert G. Wilson v, Nov 04 2013
New name, offset changed from 1 to 0 by Andrey Zabolotskiy, Dec 14 2024

A221208 Decimal expansion of the Borwein integral with 8 sinc functions.

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 6, 3, 2, 6, 7, 7, 1, 7, 9, 6, 0, 4, 6, 5, 0, 5, 8, 4, 0, 8, 9, 4, 2, 4, 6, 4, 9, 5, 8, 5, 4, 7, 5, 0, 6, 5, 9, 3, 1, 8, 3, 8, 7, 5, 3, 2, 5, 9, 5, 9, 8, 0, 2, 2, 7, 5, 8, 2, 3, 5, 4, 7, 7, 6, 9, 6, 2, 7, 6, 6, 9, 2, 6, 3, 9, 1, 0, 7, 0, 4, 9, 6, 6, 6, 1, 7, 9, 3, 8, 6, 3, 4, 7, 3, 4, 0, 5, 0, 3
Offset: 1

Views

Author

Jean-François Alcover, Feb 21 2013

Keywords

Comments

The difference from Pi/2 (A019669) is approximately 0.231006*10^(-10).

Examples

			1.57079632677179604650584089424649585475065931838753259598...
		

Crossrefs

Programs

  • Mathematica
    Integrate[Product[Sinc[x/(2*k+1)], {k, 0, 7}], {x, 0, Infinity}] // RealDigits[#, 10, 105]& // First

Formula

Equals 467807924713440738696537864469/935615849440640907310521750000*Pi. - Alois P. Heinz, Feb 28 2020
Equals Pi/2*A068214(7)/A144616(7). - Andrey Zabolotskiy, Jan 04 2023

A280841 Numerator of Integral_{x>=0} Product_{k=1..n} Sinc(x/k) dx / Pi.

Original entry on oeis.org

1, 1, 1, 1727, 20652479, 2059268143, 24860948333867803, 145905074443586569379, 4567419249415312673370820607, 1642142815363470261591271553081, 4093745592094627817260334517735412136353665283
Offset: 1

Views

Author

Seiichi Manyama, Jan 08 2017

Keywords

Comments

Let I(n) be defined by I(n) = Integral_{x>=0} Product_{k=1..n} Sinc(x/k) dx.
I(1) = I(2) = I(3) = Pi/2, however I(4) = Pi/2 - Pi/3456.

Examples

			I(4) = 1727*Pi/3456. So a(4) = 1727.
I(5) = 20652479*Pi/41472000. So a(5) = 20652479.
I(6) = 2059268143*Pi/4147200000. So a(6) = 2059268143.
I(7) = 24860948333867803*Pi/50185433088000000. So a(7) = 24860948333867803.
		

Crossrefs

Cf. A068214, A068215, A280842 (denominators).

Programs

  • Mathematica
    f[n_] := Numerator[Integrate[Product[Sinc[x/k], {k, n}], {x, 0, Infinity}]/Pi]; Array[f, 11] (* Robert G. Wilson v, Jan 29 2017 *)

Extensions

a(8)-a(11) from Alois P. Heinz, Jan 09 2017

A280842 Denominator of Integral_{x>=0} Product_{k=1..n} Sinc(x/k) dx / Pi.

Original entry on oeis.org

2, 2, 2, 3456, 41472000, 4147200000, 50185433088000000, 295090346557440000000, 9251918060437194670080000000, 3330690501757390081228800000000, 8312243866372850396258184884618526720000000000
Offset: 1

Views

Author

Seiichi Manyama, Jan 08 2017

Keywords

Comments

Let I(n) be defined by I(n) = Integral_{x>=0} Product_{k=1..n} Sinc(x/k) dx. I(1) = I(2) = I(3) = Pi/2, however I(4) = Pi/2 - Pi/3456.

Examples

			I(4) = 1727*Pi/3456. So a(4) = 3456.
I(5) = 20652479*Pi/41472000. So a(5) = 41472000.
I(6) = 2059268143*Pi/4147200000. So a(6) = 4147200000.
I(7) = 24860948333867803*Pi/50185433088000000. So a(7) = 50185433088000000.
		

Crossrefs

Cf. A068214, A068215, A280841 (numerators).

Programs

  • Mathematica
    f[n_] := Denominator[Integrate[Product[Sinc[x/k], {k, n}], {x, 0, Infinity}]/Pi]; Array[f, 11] (* Robert G. Wilson v, Jan 29 2017 *)

Extensions

a(8)-a(11) from Alois P. Heinz, Jan 10 2017
Showing 1-5 of 5 results.