cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068311 Arithmetic derivative of n!.

Original entry on oeis.org

0, 0, 1, 5, 44, 244, 2064, 15168, 181824, 1878336, 21323520, 238187520, 3496919040, 45938949120, 699188474880, 11185253452800, 220809635020800, 3774686585241600, 75413794524364800, 1439264469668659200, 31704771803185152000, 690129227948654592000
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 25 2002

Keywords

Examples

			a(4) = d(4!) = d(3!*4) = d(3!)*4 + 3!*d(4) =
  = d(2!*3)*4 + 3!*d(2*2) = d(2*3)*4 + 6*d(2*2) =
  = (d(2)*3 + 2*d(3))*4 + 6*(d(2)*2 + 2*d(2)) =
  = (1*3 + 2*1)*4 + 6*(2*2*1) = 5*4 + 6*4 = 44;
where d(n) = A003415(n) with d(1)=0, d(prime)=1 and d(m*n)= d (m)*n + m*d(n).
a(6)=2064 because the arithmetic derivative of 6!=720 is 720*(4/2 + 2/3 + 1/5).
		

References

  • Giorgio Balzarotti and Paolo P. Lava, La Derivata Arithmetica, Hoepli, Milan, p. 40.
  • Ivars Peterson, Deriving the Structure of Numbers, Science News, March 20, 2004.

Crossrefs

Programs

  • Magma
    Ad:=func; [n le 1 select 0 else Ad(Factorial(n)): n in [0..30]]; // Bruno Berselli, Oct 23 2013
    
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    a:= proc(n) option remember;
          `if`(n<2, 0, a(n-1)*n+(n-1)!*d(n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 06 2015
  • Mathematica
    a[0] = 0; a[1] = 0; a[n_] := Module[{f = Transpose[ FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Table[ a[n! ], {n, 0, 6}] (* Robert G. Wilson v, Nov 11 2004 *)
  • Python
    from collections import Counter
    from math import factorial
    from sympy import factorint
    def A068311(n): return sum((factorial(n)*e//p for p,e in sum((Counter(factorint(m)) for m in range(2,n+1)),start=Counter({2:0})).items())) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022

Formula

a(n) = A003415(A000142(n)).

Extensions

a(19)-a(21) from Bruno Berselli, Oct 23 2013