cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068329 Arithmetic derivative of Fibonacci numbers > 0.

Original entry on oeis.org

0, 0, 1, 1, 1, 12, 1, 10, 19, 16, 1, 384, 1, 42, 437, 491, 1, 4164, 150, 4388, 6341, 288, 1, 155472, 30035, 754, 115271, 142474, 1, 1530588, 2974, 1084624, 1802069, 5168, 2555363, 46594656, 503939, 1406531
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Crossrefs

Cf. A000045, A003415, A001605 (where a(n) = 1).

Programs

  • GAP
    a:=Concatenation([0,0],List(List([3..40],n->Factors(Fibonacci(n))),i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Oct 31 2018
    
  • Magma
    Ad:=func; [n le 2 select 0 else Ad(Fibonacci(n)): n in [1..40]]; // Bruno Berselli, Oct 22 2013
    
  • Mathematica
    ad[1] = 0; ad[n_] := Module[{f = FactorInteger[n]}, Total[n*f[[All, 2]]/ f[[All, 1]]]]; a[n_] := ad[Fibonacci[n]]; Array[a, 40] (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    a(n) = my(f = factor(n=fibonacci(n))~); sum(i=1, #f, n/f[1, i]*f[2, i]) \\ Iain Fox, Oct 29 2018
    
  • Python
    from sympy import fibonacci, factorint
    def A068329(n):
        f = fibonacci(n)
        return sum((f*e//p for p,e in factorint(f).items())) if n > 2 else 0 # Chai Wah Wu, Jun 12 2022

Formula

a(n) = A003415(A000045(n)).