A068394 Numbers k such that the k-th digit of Pi and the k-th digit of e are the same.
12, 16, 17, 20, 33, 39, 44, 55, 58, 69, 80, 94, 99, 142, 169, 205, 243, 262, 274, 278, 293, 323, 325, 330, 333, 360, 364, 387, 388, 395, 411, 419, 427, 428, 452, 459, 460, 461, 483, 493, 499, 500, 503, 506, 511, 522, 525, 547, 581, 590, 594, 595, 598, 602
Offset: 1
Examples
Let dPi(n) be the n-th digit of Pi=3.14159... (e.g., dPi(2)=4) and de(n) be the n-th digit of e=2.718... (e.g., de(2)=1); then dPi(12) = de(12) = 9, hence 12 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..290 from Carmine Suriano)
Programs
-
Magma
m:=610; p:=Pi(RealField(m+1)); sp:=IntegerToString(Round(10^m*(p-3))); e:=Exp(One(RealField(m+1))); se:=IntegerToString(Round(10^m*(e-2))); [ a: a in [1..m] | sp[a] eq se[a] ]; // Klaus Brockhaus, Sep 04 2009
-
Mathematica
max = 600; Position[RealDigits[Pi - 3, 10, max][[1]] - RealDigits[E - 2, 10, max][[1]], ?(# == 0 &)] // Flatten (* _Amiram Eldar, May 21 2022 *)
Formula
a(n) = A052055(n) - 1.
Extensions
Listed terms verified by Klaus Brockhaus, Sep 04 2009