A068404 Numbers k such that sigma(k) > 4*k.
27720, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800, 191520
Offset: 1
Keywords
References
- Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Felix Behrend, Über numeri abundantes II, Preuss. Akad. Wiss. Sitzungsber., Vol. 6 (1933), pp. 280-293; alternative link.
- Marc Deléglise, Bounds for the Density of Abundant Integers, Experimental Mathematics, Vol. 7, No. 2 (1998), pp. 137-143.
- Richard Laatsch, Measuring the Abundancy of Integers, Mathematics Magazine, Vol. 59, No. 2 (1986), pp. 84-92, alternative link.
- Gordon L. Miller and Mary T. Whalen, Multiply Abundant Numbers, School Science and Mathematics, Volume 95, Issue 5 (May 1995), pp. 256-259.
- Summer 2010 research group on Abundancy, Abundancy Bounds 2010, McDaniel College, 2010.
- Charles R. Wall, Phillip L. Crews and Donald B. Johnson, Density Bounds for the Sum of Divisors Function, Mathematics of Computation, Vol. 26, No. 119 (1972), pp. 773-777; Errata, Vol. 31, No. 138 (1977), p. 616.
Programs
-
Mathematica
Select[Range[27720,9!,60], 4*#
Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
Formula
A001221(a(n)) >= 4 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
Comments