A068407 Automorphic numbers: numbers k such that k^5 ends with k. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 1 (mod 4).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 25, 32, 43, 49, 51, 57, 68, 75, 76, 93, 99, 125, 193, 249, 251, 307, 375, 376, 432, 443, 499, 501, 557, 568, 624, 625, 693, 749, 751, 807, 875, 943, 999, 1249, 1251, 1693, 1875, 2057, 2499, 2501, 2943, 3125, 3307, 3568, 3749, 3751
Offset: 1
Examples
13568 is a term because 13568^5 = 459810807237016813568 ends with 13568.
Links
Programs
-
Magma
[n : n in [0..3749] | Intseq(n^5)[1..#Intseq(n)] eq Intseq(n)]; // Arkadiusz Wesolowski, Nov 15 2013
-
Mathematica
Select[Range[0,100000],PowerMod[#,5,10^IntegerLength[#]]==#&] (* Harvey P. Dale, Nov 04 2011 *)
-
Sage
def automorphic(maxdigits, pow, base=10) : morphs = [[0]] for i in range(maxdigits): T=[d*base^i+x for x in morphs[-1] for d in range(base)] morphs.append([x for x in T if x^pow % base^(i+1) == x]) return sorted(set(sum(morphs,[]))) # (call with pow=5 for this sequence), Eric M. Schmidt, Jul 29 2013