cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068414 Numbers k such that sigma(k) = 3k - 2*phi(k).

Original entry on oeis.org

1, 12, 56, 260, 992, 1976, 2156, 2754, 16256, 25232, 41072, 133984, 145888, 1100864, 1270208, 1439552, 2237888, 4729664, 67100672, 75398912, 171627376, 277060144, 473089984, 538178048, 558585344, 629225984, 1192258048, 1863840112, 2181070592, 4534854656
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

If 2^p-1 is prime (a Mersenne prime) and n = 2^p*(2^p-1) then n is in the sequence because 3*n-2*phi(n) = 3*2^p*(2^p-1)-2^p*(2^p-2) = 2^p*(2^(p+1)-1) = sigma(2^p-1)*sigma(2^p) = sigma(2^p*(2^p-1)) = sigma(n). - Farideh Firoozbakht, Dec 31 2005

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 3*# - 2*EulerPhi[#] &] (* Amiram Eldar, May 14 2022 *)
  • PARI
    for(n=1,500000, if(sigma(n)==3*n-2*eulerphi(n),print1(n,",")))

Extensions

More terms (complete up to 50000000). - Rick L. Shepherd, Mar 28 2002
More terms from Labos Elemer, Apr 03 2002
a(24)-a(30) from Donovan Johnson, Feb 08 2012