cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068418 Composite numbers k such that k - phi(k) divides sigma(k) - k.

Original entry on oeis.org

12, 56, 260, 992, 1320, 1976, 2156, 2754, 3696, 5520, 13800, 16256, 19872, 22560, 23688, 25232, 41072, 87000, 89964, 133984, 145888, 366720, 785808, 851760, 1100864, 1235052, 1270208, 1439552, 1470720, 2129400, 2237888, 4729664
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

If 2^p - 1 is prime (a Mersenne prime) then k = 2^p*(2^p - 1) is in the sequence because 3*k - 2*phi(k) = sigma(k) (see Comments at A068414) so sigma(k) - k = 2*(k - phi(k)) hence k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005
Also if 3*2^m - 1 is a prime greater than 5 then k = 15*2^(m+1)*(3*2^m - 1) is in the sequence because 4*k - 3*phi(k) = 4*15*2^(m+1)*(3*2^m - 1) - 3*2^(m+3)*(3*2^m - 2) = 24*(3*2^m)*(2^(m+2) - 1) = sigma(15)*sigma(3*2^m - 1)*sigma(2^(m+1)) = sigma(15*(3*2^m - 1)*2^(m+1)) = sigma(k) hence sigma(k) - k = 3*(k - phi(k)) and k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005

Crossrefs

A068414 is the subsequence telling when the quotient is 2.

Programs

  • Mathematica
    Do[s=(DivisorSigma[1, n]-n)/(n-EulerPhi[n]); If[ !PrimeQ[n]&&IntegerQ[s], Print[n]], {n, 2, 10000000}]
  • PARI
    for(n=1,300000, if((sigma(n)-n)%(n-eulerphi(n))==isprime(n),print1(n,",")))

Extensions

More terms from Labos Elemer, Apr 02 2002

A069714 Least integer k such that (sigma(k)-k)/(k-phi(k)) = n.

Original entry on oeis.org

2, 12, 1320, 851760
Offset: 1

Views

Author

Labos Elemer, Apr 02 2002

Keywords

Comments

10^11 < a(5) <= 124176229632000. - Donovan Johnson, Oct 22 2011

Crossrefs

Formula

a(n) = Min{x: A001065(x) / A051953(x) = n}.

A069737 Integer quotient defining A068418 is 3.

Original entry on oeis.org

1320, 3696, 5520, 13800, 19872, 22560, 23688, 87000, 89964, 366720, 785808, 1235052, 1470720, 8690112, 45986616, 46862592, 78584640, 142588224, 231718968, 235668528, 377425920, 1598249952, 9518204448, 12026499072, 40964894160, 65368504980
Offset: 1

Views

Author

Labos Elemer, Apr 05 2002

Keywords

Examples

			40th term in A068418 is m=142588224, sum-of-proper-divisors[m]=294860736, cototient[m]=98286912, quotient=3=294860736/98286912,
		

Crossrefs

Formula

(Sum of proper divisors[m])/cototient[m]=3, where m is a term of A068418.

Extensions

More terms from Labos Elemer, Apr 22 2002
a(22)-a(26) from Donovan Johnson, May 27 2011

A069719 Integer quotients arising in A068418: sum of proper divisors is divided by cototient of terms of A068418.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 4, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Labos Elemer, Apr 05 2002

Keywords

Examples

			n=39: m=A068418(39)=130141440, sigma[m]-m=405550080, m-Phi[m]=101387520, quotient=4=a(39).
		

Crossrefs

Formula

a(n) = A001065(A068418(n)) - A051953(A068418(n)).

Extensions

a(47)-a(68) from Donovan Johnson, May 27 2011
Showing 1-4 of 4 results.