cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A069737 Integer quotient defining A068418 is 3.

Original entry on oeis.org

1320, 3696, 5520, 13800, 19872, 22560, 23688, 87000, 89964, 366720, 785808, 1235052, 1470720, 8690112, 45986616, 46862592, 78584640, 142588224, 231718968, 235668528, 377425920, 1598249952, 9518204448, 12026499072, 40964894160, 65368504980
Offset: 1

Views

Author

Labos Elemer, Apr 05 2002

Keywords

Examples

			40th term in A068418 is m=142588224, sum-of-proper-divisors[m]=294860736, cototient[m]=98286912, quotient=3=294860736/98286912,
		

Crossrefs

Formula

(Sum of proper divisors[m])/cototient[m]=3, where m is a term of A068418.

Extensions

More terms from Labos Elemer, Apr 22 2002
a(22)-a(26) from Donovan Johnson, May 27 2011

A069719 Integer quotients arising in A068418: sum of proper divisors is divided by cototient of terms of A068418.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 4, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Labos Elemer, Apr 05 2002

Keywords

Examples

			n=39: m=A068418(39)=130141440, sigma[m]-m=405550080, m-Phi[m]=101387520, quotient=4=a(39).
		

Crossrefs

Formula

a(n) = A001065(A068418(n)) - A051953(A068418(n)).

Extensions

a(47)-a(68) from Donovan Johnson, May 27 2011

A055940 Counterbalanced numbers: Composite numbers k such that phi(k)/(sigma(k)-k) is an integer.

Original entry on oeis.org

133, 403, 583, 713, 817, 2077, 2623, 2923, 4453, 4717, 5311, 5773, 7093, 7747, 9313, 11023, 11581, 11653, 12877, 14353, 15553, 19303, 20803, 21409, 21733, 21971, 24307, 31169, 35033, 39283, 39337, 43873, 46297, 46357, 50573, 50879, 53863
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2000

Keywords

Comments

Banks and Luca (2007) showed that the number of terms <= x, N(x) <= x * exp(-((1/3)*(log(8))^(1/3) + o(1))*(log(x))^(1/3)*(log(log(x)))^(1/3)) as x -> infinity, and that under Dickson's conjecture this sequence is infinite, since for each positive integer m, if p = 5m + 1 and q = 20m + 13 are primes, then p*q is a term. - Amiram Eldar, Apr 13 2020

Examples

			k = 133 = 7*19: phi(133)=108, sigma(133)-133 = 1+7+19 = 27, q = 4.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n); If[ !PrimeQ[n]&&IntegerQ[s], Print[n]], {n, 2, 1000000}]
    Select[Range[54000],CompositeQ[#]&&IntegerQ[EulerPhi[#]/(DivisorSigma[ 1,#]-#)]&] (* Harvey P. Dale, Nov 16 2021 *)
  • PARI
    is(n)=!isprime(n) && n>1 && eulerphi(n)%(sigma(n)-n)==0 \\ Charles R Greathouse IV, Jan 02 2014

A068414 Numbers k such that sigma(k) = 3k - 2*phi(k).

Original entry on oeis.org

1, 12, 56, 260, 992, 1976, 2156, 2754, 16256, 25232, 41072, 133984, 145888, 1100864, 1270208, 1439552, 2237888, 4729664, 67100672, 75398912, 171627376, 277060144, 473089984, 538178048, 558585344, 629225984, 1192258048, 1863840112, 2181070592, 4534854656
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

If 2^p-1 is prime (a Mersenne prime) and n = 2^p*(2^p-1) then n is in the sequence because 3*n-2*phi(n) = 3*2^p*(2^p-1)-2^p*(2^p-2) = 2^p*(2^(p+1)-1) = sigma(2^p-1)*sigma(2^p) = sigma(2^p*(2^p-1)) = sigma(n). - Farideh Firoozbakht, Dec 31 2005

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 3*# - 2*EulerPhi[#] &] (* Amiram Eldar, May 14 2022 *)
  • PARI
    for(n=1,500000, if(sigma(n)==3*n-2*eulerphi(n),print1(n,",")))

Extensions

More terms (complete up to 50000000). - Rick L. Shepherd, Mar 28 2002
More terms from Labos Elemer, Apr 03 2002
a(24)-a(30) from Donovan Johnson, Feb 08 2012

A070159 Numbers k such that phi(k)/(sigma(k)-k) is an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Comments

This sequence consists of all primes p (for which the given ratio equals (p-1)/1, see A000040) and of composites listed in A055940 (see examples).
Up to 10^7, there is no element of this sequence having more than 2 prime factors. - M. F. Hasler, Dec 11 2007

Examples

			The prime p=47 is in this sequence since phi[p]/(sigma[p]-p) = p-1 is an integer, as is the case for any other prime.
The composite n=403=13*31 is in this sequence, since the ratio phi(n)/(sigma[n]-n) =360/(1+13+31)=8 is an integer.
The first few composites in this sequence are 133,403,583,713,... (A055940).
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n); If[IntegerQ[s], Print[n]], {n, 2, 1000}]
    Select[Range[2,300],IntegerQ[EulerPhi[#]/(DivisorSigma[1,#]-#)]&] (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    for(n=2,999,eulerphi(n)%(sigma(n)-n) || print1(n",")) \\ M. F. Hasler, Dec 11 2007

Formula

{ a(k) } = { n in N | A000010(n)/A001065(n) is an integer }.
{ a(k) } = { A000040(k) } union { A055940(k) }.

Extensions

Edited by M. F. Hasler, Dec 11 2007

A070160 Nonprime numbers k such that phi(k)/(sigma(k) - k - 1) is an integer.

Original entry on oeis.org

4, 9, 15, 25, 35, 49, 95, 119, 121, 143, 169, 209, 287, 289, 319, 323, 361, 377, 527, 529, 559, 779, 841, 899, 903, 923, 961, 989, 1007, 1189, 1199, 1343, 1349, 1369, 1681, 1763, 1849, 1919, 2159, 2209, 2507, 2759, 2809, 2911, 3239, 3481, 3599, 3721
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Comments

Euler phi value divided by Chowla function gives integer.

Examples

			In A062972, n=15: q = 8/8 = 1; n=101: q = 100/1 = 100. While integer quotient chowla(n)/phi(n) gives only 5 nonprime solutions below 20000000 (see A070037), here, the integer reciprocals, q = phi(n)/chowla(n) obtained with squared primes and with other composites. If n=p^2, q = p(p-1)/p = p-1. So for squared primes, the quotients give A006093.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

{k : A000010(k)/A048050(k) is an integer}.

A070161 Nonprime numbers n such that q=phi(n)/(sigma(n)-n-1) is an integer and n is not a prime square.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 903, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Examples

			n=35: phi(35)=24, sigma(35)=1+5+7+35=48, chowla(35)=12, quotient=2
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[ !PrimeQ[n]&&!PrimeQ[Sqrt[n]]&&IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

q=A000010(n)/A048050(n) and n is not in A001248.

A069714 Least integer k such that (sigma(k)-k)/(k-phi(k)) = n.

Original entry on oeis.org

2, 12, 1320, 851760
Offset: 1

Views

Author

Labos Elemer, Apr 02 2002

Keywords

Comments

10^11 < a(5) <= 124176229632000. - Donovan Johnson, Oct 22 2011

Crossrefs

Formula

a(n) = Min{x: A001065(x) / A051953(x) = n}.
Showing 1-8 of 8 results.