cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378932 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 3, 15, 15, 3, 4, 28, 53, 28, 4, 5, 45, 146, 146, 45, 5, 6, 66, 356, 627, 356, 66, 6, 7, 91, 809, 2471, 2471, 809, 91, 7, 8, 120, 1759, 9292, 16213, 9292, 1759, 120, 8, 9, 153, 3716, 33878, 103196, 103196, 33878, 3716, 153, 9, 10, 190, 7702, 120771, 642364, 1123743, 642364, 120771, 7702, 190, 10
Offset: 1

Views

Author

Andrew Howroyd, Dec 11 2024

Keywords

Comments

T(m,n) is the number of partitionings of an m X n checkerboard into two edgewise-connected sets.

Examples

			Table starts:
===================================================
m\n | 1  2    3     4      5        6         7 ...
----+----------------------------------------------
  1 | 0  1    2     3      4        5         6 ...
  2 | 1  6   15    28     45       66        91 ...
  3 | 2 15   53   146    356      809      1759 ...
  4 | 3 28  146   627   2471     9292     33878 ...
  5 | 4 45  356  2471  16213   103196    642364 ...
  6 | 5 66  809  9292 103196  1123743  12028981 ...
  7 | 6 91 1759 33878 642364 12028981 221984391 ...
  ...
		

Crossrefs

Main diagonal is A068416.
Rows 1..4 are A001477(n-1), A000384, A378933, A378934.
Rows 3..8 multiplied by 2 are A166761, A166766, A166769, A166771, A166773, A166774.

Formula

T(m,n) = T(n,m).

A068393 Number of partitions of n X n checkerboard by two edgewise-connected sets which produce the maximum n^2-2n+2 frontier edges between the two sets. Partitions equal under rotation or reflection are counted only once.

Original entry on oeis.org

2, 3, 7, 44, 494, 748827, 99987552, 23904291912, 23904291912, 14647978829979, 16186345621426754, 45843626565163628751, 235646717730827228414584, 3099290829556018890177304005
Offset: 2

Views

Author

R. H. Hardin, Mar 03 2002

Keywords

Comments

For even n > 2 the only symmetry possible is rotation by 180 degrees. For odd n > 1 the only symmetries are reflections either horizontally or vertically. - Andrew Howroyd, Apr 15 2016

Examples

			From _Andrew Howroyd_, Apr 15 2016: (Start)
Case n=4: There are 2 nonisomorphic symmetrical solutions (see illustration below). a(4)=(A068381(4)/8 + 2)/2 = 7.
    __.__.__.__.    __.__.__.__.
   |   __    __|   |   __   |  |
   |  |  |  |  |   |  |  |  |  |
   |__|  |__|  |   |  |  |__|  |
   |__.__.__.__|   |__|__.__.__|
Case n=5: There are 7 nonisomorphic symmetrical solutions (see illustration below). a(5)=(A068381(5)/8 + 7)/2 = 44.
    __.__.__.__.__.   __.__.__.__.__.   __.__.__.__.__.   __.__.__.__.__.
   |   __|  |__   |  |   __|  |__   |  |  |__    __|  |  |  |   __   |  |
   |  |__    __|  |  |  |   __   |  |  |   __|  |__   |  |  |  |  |  |  |
   |   __|  |__   |  |  |  |  |  |  |  |  |   __   |  |  |  |  |  |  |  |
   |  |__.__.__|  |  |  |__|  |__|  |  |  |__|  |__|  |  |  |__|  |__|  |
   |__.__.__.__.__|  |__.__.__.__.__|  |__.__.__.__.__|  |__.__.__.__.__|
    __.__.__.__.__.   __.__.__.__.__.   __.__.__.__.__.
   |__.__    __.__|  |__    __    __|  |   __    __   |
   |   __|  |__   |  |  |  |  |  |  |  |__|  |  |  |__|
   |  |   __   |  |  |  |  |  |  |  |  |   __|  |__   |
   |  |__|  |__|  |  |  |__|  |__|  |  |  |__.__.__|  |
   |__.__.__.__.__|  |__.__.__.__.__|  |__.__.__.__.__|
(End)
		

Crossrefs

Extensions

a(7)-a(15) from Andrew Howroyd, Apr 15 2016

A166755 Number of n X n 1..2 arrays containing at least one of each value, and all equal values connected.

Original entry on oeis.org

0, 12, 106, 1254, 32426, 2247486, 443968782, 255122769986, 431534126902662, 2165656440779563158, 32418178732724142833570, 1452876796004423753334759362, 195482230310004930545348833858390, 79131192890976439895988807925969458614, 96533107106359142781127117074385161767893162
Offset: 1

Views

Author

R. H. Hardin, Oct 21 2009

Keywords

Examples

			Some solutions for n=4
...1.2.2.2...1.1.1.1...2.2.2.1...2.1.1.1...1.1.1.1...2.2.2.2...1.1.1.2
...1.2.1.2...2.2.2.1...2.2.2.1...2.2.1.1...1.1.2.2...1.2.2.2...2.2.1.2
...1.1.1.2...2.2.2.1...2.2.1.1...1.1.1.1...1.1.2.2...2.2.2.2...2.1.1.2
...2.2.2.2...2.1.1.1...2.2.2.2...1.1.1.1...2.2.2.2...2.2.2.2...2.2.2.2
------
...1.1.1.2...2.1.1.1...2.2.2.2...1.1.1.1...1.1.1.1...1.1.1.1...2.2.2.2
...1.1.2.2...2.1.1.1...2.2.1.2...1.1.1.1...2.2.1.1...1.2.1.2...1.2.2.2
...1.1.1.2...2.2.1.1...2.2.1.2...1.1.2.1...1.2.1.1...1.2.2.2...1.1.2.2
...1.1.2.2...2.2.2.2...2.1.1.1...2.2.2.1...1.1.1.1...1.1.1.2...1.1.1.2
		

Crossrefs

Cf. A068416.

Formula

a(n) = 2*A068416(n). - Andrew Howroyd, Dec 11 2024

Extensions

a(7) onwards added using A068416 by Andrew Howroyd, Dec 11 2024

A271802 Number of cuttings of an n X n checkerboard along grid lines into two pieces with holes disallowed.

Original entry on oeis.org

0, 6, 52, 614, 16000, 1114394, 220762028, 127074234622, 215163221802400, 1080509693050320314, 16181730102294154610684, 725449589191165593072311582, 97631783799192329642727718567824, 39528641527526180063041016094650084850
Offset: 1

Views

Author

Andrew Howroyd, Apr 14 2016

Keywords

Comments

Equivalently, the number of partitionings of an n X n checkerboard into two edgewise-connected simply-connected sets. (Cf. A068416).
Each part is required to contain at least one cell and cuttings are considered different if they only differ by rotation or reflection.

Programs

Formula

a(n) = A068416(n) - A140517(n-2).
Showing 1-4 of 4 results.