cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068418 Composite numbers k such that k - phi(k) divides sigma(k) - k.

Original entry on oeis.org

12, 56, 260, 992, 1320, 1976, 2156, 2754, 3696, 5520, 13800, 16256, 19872, 22560, 23688, 25232, 41072, 87000, 89964, 133984, 145888, 366720, 785808, 851760, 1100864, 1235052, 1270208, 1439552, 1470720, 2129400, 2237888, 4729664
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

If 2^p - 1 is prime (a Mersenne prime) then k = 2^p*(2^p - 1) is in the sequence because 3*k - 2*phi(k) = sigma(k) (see Comments at A068414) so sigma(k) - k = 2*(k - phi(k)) hence k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005
Also if 3*2^m - 1 is a prime greater than 5 then k = 15*2^(m+1)*(3*2^m - 1) is in the sequence because 4*k - 3*phi(k) = 4*15*2^(m+1)*(3*2^m - 1) - 3*2^(m+3)*(3*2^m - 2) = 24*(3*2^m)*(2^(m+2) - 1) = sigma(15)*sigma(3*2^m - 1)*sigma(2^(m+1)) = sigma(15*(3*2^m - 1)*2^(m+1)) = sigma(k) hence sigma(k) - k = 3*(k - phi(k)) and k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005

Crossrefs

A068414 is the subsequence telling when the quotient is 2.

Programs

  • Mathematica
    Do[s=(DivisorSigma[1, n]-n)/(n-EulerPhi[n]); If[ !PrimeQ[n]&&IntegerQ[s], Print[n]], {n, 2, 10000000}]
  • PARI
    for(n=1,300000, if((sigma(n)-n)%(n-eulerphi(n))==isprime(n),print1(n,",")))

Extensions

More terms from Labos Elemer, Apr 02 2002