cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068447 Factorial expansion: zeta(4) = Pi^4/90 = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 1, 4, 5, 1, 7, 2, 4, 6, 0, 8, 8, 14, 14, 14, 12, 0, 14, 2, 5, 15, 9, 11, 25, 12, 9, 1, 21, 29, 29, 20, 22, 29, 21, 27, 10, 4, 13, 20, 20, 30, 11, 7, 18, 18, 15, 39, 8, 47, 41, 51, 36, 28, 50, 35, 32, 6, 38, 23, 41, 45, 49, 36, 11, 31, 60, 5, 50, 42, 61, 1, 61, 68, 43, 76, 41
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A013662 (decimal expansion).

Programs

  • Magma
    R:= RealField(200); [Floor(Pi(R)^4/90)] cat [Floor(Factorial(n)* Pi(R)^4/90) - n*Floor(Factorial((n-1))*Pi(R)^4/90) : n in [2..78]]; // G. C. Greubel, Mar 21 2018
  • Mathematica
    Table[If[n == 1, Floor[Pi^4/90], Floor[n!*(Pi^4/90)] - n*Floor[(n- 1)!*(Pi^4/90)]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    for(n=1,30, print1(if(n==1, floor(Pi^4/90), floor(n!*Pi^4/90) - n*floor((n-1)!*Pi^4/90)), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068447_vec(N=90,c=zeta(precision(4.,N*log(N/2.4)\/2.3)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 28 2018