cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A052277 a(n) = (4n+2)!/2^(2n+1).

Original entry on oeis.org

1, 90, 113400, 681080400, 12504636144000, 548828480360160000, 49229914688306352000000, 8094874872198213459360000000, 2252447502438386084347676160000000, 997586474354936812896742294502400000000, 669959124447288464805194190141921792000000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2000

Keywords

Crossrefs

Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)).
Cf. A068447, A067912, A013662 (zeta(4)).

Programs

  • Mathematica
    Table[(4n+2)!/2^(2n+1), {n, 0, 10}] (* Amiram Eldar, Feb 25 2022 *)
  • PARI
    a(n) = (4*n+2)!/2^(2*n+1); \\ Michel Marcus, Feb 20 2022

Formula

sin(x)*sinh(x) = Sum_{n>=0} (-1)^n*x^(4n+2)/a(n). - Benoit Cloitre, Feb 02 2002
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (cosh(sqrt(2)) - cos(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = sin(1)*sinh(1). (End)

A333972 Decimal expansion of Pi^6/540 = zeta(2) * zeta(4).

Original entry on oeis.org

1, 7, 8, 0, 3, 5, 0, 3, 5, 8, 4, 7, 2, 7, 8, 5, 9, 9, 4, 5, 0, 0, 4, 0, 6, 3, 7, 7, 1, 3, 4, 1, 1, 0, 9, 2, 3, 8, 2, 8, 1, 8, 0, 6, 0, 7, 5, 5, 7, 4, 9, 3, 7, 3, 3, 2, 2, 4, 2, 1, 5, 1, 6, 2, 0, 0, 7, 5, 8, 1, 3, 2, 0, 0, 7, 8, 4, 2, 6, 3, 2, 1, 2, 9, 4, 8, 5, 4, 4, 6, 1, 3, 9, 2, 4
Offset: 1

Views

Author

Bernard Schott, Sep 29 2020

Keywords

Comments

Compare 1st formula with Sum_{m>0, q>0} 1/(m^2*q^2) = Pi^4/36 = (zeta(2))^2 = A098198.

Examples

			1.78035035847278599450040637713411092382818060755749373322421516...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.22, p. 275.

Crossrefs

Programs

  • Maple
    evalf(Pi^6/540,120);
  • Mathematica
    RealDigits[Pi^6/540, 10, 100][[1]] (* Amiram Eldar, Sep 29 2020 *)
  • PARI
    Pi^6/540 \\ Michel Marcus, Sep 30 2020

Formula

Equals Sum_{m>0, q>0, m | q} 1/(m^2*q^2).
Equals A013661 * A068447.
Equals Sum_{k>=1} sigma_2(k)/k^4. - Amiram Eldar, Sep 30 2020
Equals Sum_{k>=1} A046951(k)/k^2. - Amiram Eldar, Jan 25 2024

A067277 Factorial expansion of zeta(3): zeta(3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 3, 2, 8, 4, 0, 11, 11, 10, 9, 4, 2, 11, 5, 12, 16, 12, 6, 3, 22, 22, 12, 14, 23, 1, 24, 24, 12, 14, 1, 27, 14, 26, 21, 16, 22, 14, 6, 19, 12, 12, 36, 22, 32, 38, 10, 1, 14, 51, 9, 6, 51, 26, 50, 25, 30, 44, 19, 49, 12, 17, 24, 55, 17, 47, 11, 8, 43, 71, 43, 16, 76
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			zeta(3) = 1 + 1/3! + 4/5! + 1/6! + 3/7! + 2/8! + 8/9! + 4/10! + ...
		

Crossrefs

Cf. A067279 (zeta(2)), A068447 (zeta(4)), A068454 (zeta(5)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,3))] cat [Floor(Factorial(n)*Evaluate(L,3)) - n*Floor(Factorial((n-1))*Evaluate(L,3)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = Zeta[3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = zeta(3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A067279(n):
        if (n==1): return floor(zeta(3))
        else: return expand(floor(factorial(n)*zeta(3)) - n*floor(factorial(n-1)*zeta(3)))
    [A067279(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(n!*zeta(3)) - n*floor((n-1)!*zeta(3)), with a(1)=1, for n > 1.

A067279 Factorial expansion of zeta(2) : zeta(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 3, 2, 2, 2, 3, 6, 6, 8, 1, 11, 12, 7, 6, 13, 7, 3, 2, 2, 2, 9, 20, 9, 16, 11, 0, 12, 13, 19, 25, 26, 31, 18, 24, 21, 32, 12, 34, 22, 24, 13, 14, 41, 20, 34, 29, 22, 40, 50, 4, 33, 50, 39, 8, 15, 24, 14, 59, 40, 3, 9, 29, 27, 14, 18, 39, 59, 44, 28, 30, 35, 5, 64, 20, 18
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A067277 (zeta(3)), A068447 (zeta(4)), A068454 (zeta(5)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,2))] cat [Floor(Factorial(n)*Evaluate(L,2)) - n*Floor(Factorial((n-1))*Evaluate(L,2)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = Zeta[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = zeta(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A067279(n):
        if (n==1): return floor(zeta(2))
        else: return expand(floor(factorial(n)*zeta(2)) - n*floor(factorial(n-1)*zeta(2)))
    [A067279(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(n!*zeta(2)) - n*floor((n-1)!*zeta(2)), for n>=2.

Extensions

a(1) corrected by G. C. Greubel, Nov 26 2018

A068454 Factorial expansion of zeta(5) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

1, 0, 0, 0, 4, 2, 4, 0, 8, 3, 4, 9, 10, 5, 3, 12, 4, 1, 10, 0, 6, 19, 0, 19, 10, 21, 19, 16, 3, 27, 24, 12, 12, 14, 7, 33, 27, 15, 28, 15, 7, 15, 7, 21, 13, 29, 16, 44, 39, 27, 39, 17, 6, 18, 2, 21, 21, 35, 29, 12, 13, 6, 39, 14, 1, 23, 55, 34, 10, 42, 70, 14, 42, 26, 74, 64, 12, 42, 14
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A075874 (same for Pi), A007514 (different variant).
Cf. A067279 (zeta(2)), A067277 (zeta(3)), A068447 (zeta(4)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); b:=Evaluate(RiemannZeta(),5); [n eq 1 select Floor(b) else Floor(Factorial(n)*b) - n*Floor(Factorial(n)*b/n) : n in [1..100]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[5]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[5]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(N=100, n, if(n>1, c=c%1*n, c=zeta(precision(5.,N*log(N/2.7)\2.3+3)))\1) \\ Specific a(n) can be computed via the FORMULA. For repeated use the value of c can be stored as a global variable, to be re-computed with higher precision when log_10(n!) exceeds its precision. - M. F. Hasler, Nov 25 2018
    
  • Sage
    b=zeta(5)
    @cached_function
    def A068454(n):
        if n == 1: return floor(b)
        else: return expand(floor(factorial(n)*b) - n*floor(factorial(n-1)*b))
    [A068454(n) for n in (1..100)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(c*n!) - n*floor(c*(n-1)!) = floor(frac(c*(n-1)!)*n) for n > 1, with c = zeta(5). - M. F. Hasler, Dec 20 2018

Extensions

Name edited and keyword cons removed by M. F. Hasler, Nov 25 2018
Showing 1-5 of 5 results.