cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068452 Pi^2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

9, 1, 2, 0, 4, 2, 0, 6, 4, 0, 4, 11, 6, 4, 14, 8, 12, 6, 18, 12, 12, 14, 13, 2, 7, 20, 12, 2, 16, 21, 25, 26, 29, 19, 7, 3, 20, 3, 38, 7, 12, 19, 37, 1, 23, 32, 19, 32, 38, 45, 45, 27, 44, 34, 14, 49, 35, 29, 30, 57, 57, 18, 56, 48, 33, 19, 44, 35, 12, 56, 28, 38, 64, 35, 10, 45, 35, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

For the fractional part, this corresponds to the factoradic (or factorial base, or harmonic) expansion, but the integer part 9 = 3! + 2! + 1! would be [1, 1, 1] in factorial base, cf. A007623(9) = 111. - M. F. Hasler, Nov 27 2018

Crossrefs

Cf. A002388 (decimal expansion of Pi^2).
Similar expansions: A068450 (sqrt(Pi)), A075874 (Pi), A007514 (different variant for Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R)^2)] cat [Floor(Factorial(n)*Pi(R)^2) - n*Floor(Factorial((n-1))*Pi(R)^2) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    fexp := proc(x) local xres,a,n ; xres := x ; a := [] ; for n from 1 to 100 do a := [op(a),floor(n!*xres)] ; xres := xres-op(-1,a)/n! ; od: a ; end: Digits := 400 ; fexp(evalf(Pi^2)) ; Digits := 600 ; fexp(evalf(Pi^2)) ; # R. J. Mathar, Sep 30 2008
  • Mathematica
    p=N[Pi, 10000]^2; Do[k=Floor[p n!]; p=p - k / n!; Print[k], {n, 1000}] (* Vincenzo Librandi, Nov 24 2018 *)
    With[{b = Pi^2}, Table[If[n == 1, Floor[b], Floor[n!*b] -n*Floor[(n- 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = Pi^2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • PARI
    A068452(N=90, c=precision(Pi^2,logint(N!,10)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068452(n):
        if (n==1): return floor(pi^2)
        else: return expand(floor(factorial(n)*pi^2) - n*floor(factorial(n-1)*pi^2))
    [A068452(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Corrected beginning at 3rd term by R. J. Mathar, Sep 30 2008