A068468 Decimal expansion of zeta(6)/(zeta(2)*zeta(3)).
5, 1, 4, 5, 1, 0, 1, 0, 1, 5, 0, 8, 3, 9, 3, 1, 2, 3, 0, 7, 3, 2, 8, 1, 1, 8, 6, 7, 7, 2, 7, 8, 9, 6, 1, 6, 5, 0, 6, 5, 6, 5, 7, 4, 6, 9, 0, 7, 1, 2, 8, 0, 1, 8, 3, 3, 7, 5, 4, 3, 4, 5, 7, 2, 2, 2, 4, 5, 5, 1, 4, 9, 4, 9, 3, 8, 2, 4, 9, 4, 6, 7, 7, 3, 2, 3, 8, 4, 2, 4, 7, 8, 6, 8, 7, 5, 9, 7, 4, 8, 0, 8, 4, 6
Offset: 0
Examples
0.514510101508393123073281186772789616506565746907128.....
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for zeta function.
Programs
-
Magma
R:=RealField(150); SetDefaultRealField(R); L:=RiemannZeta(); 2*Pi(R)^4/(315*Evaluate(L,3)); // G. C. Greubel, Mar 11 2018
-
Mathematica
RealDigits[Zeta[6]/(Zeta[2]*Zeta[3]), 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
-
PARI
default(realprecision, 100); zeta(6)/(zeta(2)*zeta(3)) \\ G. C. Greubel, Mar 11 2018
Formula
From Amiram Eldar, Nov 07 2022: (Start)
Equals 2*Pi^4/(315*zeta(3)).
Equals Product_{p prime} (1 - 1/(p^2-p+1)). (End)