cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068468 Decimal expansion of zeta(6)/(zeta(2)*zeta(3)).

Original entry on oeis.org

5, 1, 4, 5, 1, 0, 1, 0, 1, 5, 0, 8, 3, 9, 3, 1, 2, 3, 0, 7, 3, 2, 8, 1, 1, 8, 6, 7, 7, 2, 7, 8, 9, 6, 1, 6, 5, 0, 6, 5, 6, 5, 7, 4, 6, 9, 0, 7, 1, 2, 8, 0, 1, 8, 3, 3, 7, 5, 4, 3, 4, 5, 7, 2, 2, 2, 4, 5, 5, 1, 4, 9, 4, 9, 3, 8, 2, 4, 9, 4, 6, 7, 7, 3, 2, 3, 8, 4, 2, 4, 7, 8, 6, 8, 7, 5, 9, 7, 4, 8, 0, 8, 4, 6
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			0.514510101508393123073281186772789616506565746907128.....
		

Crossrefs

Cf. A013661 (zeta(2)), A002117 (zeta(3)), A013664 (zeta(6)), A082695 (inverse).

Programs

  • Magma
    R:=RealField(150); SetDefaultRealField(R); L:=RiemannZeta(); 2*Pi(R)^4/(315*Evaluate(L,3)); // G. C. Greubel, Mar 11 2018
  • Mathematica
    RealDigits[Zeta[6]/(Zeta[2]*Zeta[3]), 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
  • PARI
    default(realprecision, 100); zeta(6)/(zeta(2)*zeta(3)) \\ G. C. Greubel, Mar 11 2018
    

Formula

From Amiram Eldar, Nov 07 2022: (Start)
Equals 2*Pi^4/(315*zeta(3)).
Equals Product_{p prime} (1 - 1/(p^2-p+1)). (End)