cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A082695 Decimal expansion of zeta(2)*zeta(3)/zeta(6).

Original entry on oeis.org

1, 9, 4, 3, 5, 9, 6, 4, 3, 6, 8, 2, 0, 7, 5, 9, 2, 0, 5, 0, 5, 7, 0, 7, 0, 3, 6, 2, 5, 7, 4, 7, 6, 3, 4, 3, 7, 1, 8, 7, 8, 5, 8, 5, 0, 1, 7, 6, 7, 8, 0, 5, 7, 1, 6, 0, 2, 6, 6, 3, 5, 6, 8, 8, 9, 0, 0, 5, 3, 4, 9, 5, 0, 6, 9, 3, 5, 5, 4, 0, 5, 3, 9, 4, 8, 1, 7, 9, 1, 0, 0, 8, 2, 1, 1, 1, 1, 3, 0, 1, 0, 6, 9, 0, 5
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Equals the Dirichlet zeta-function Sum_{n>=1} A001615(n)/n^s at s=3. - R. J. Mathar, Apr 02 2011
Dressler shows that this is the average value of A014197, that is, the number of values m such that phi(m) <= n is asymptotically n times this constant. Erdős had shown earlier that this limit exists. - Charles R Greathouse IV, Nov 26 2013
From Stanislav Sykora, Nov 14 2014: (Start)
Equals lim_{n->infinity} (Sum_{k=1..n} k/phi(k))/n, i.e., the limit mean value of k/phi(k), where phi(k) is Euler's totient function.
Also equals lim_{n->infinity} (Sum_{k=1..n} 1/phi(k))/log(n).
Proofs are trivial using the formulas for Sum_{k=1..n} k/phi(k) and Sum_{k=1..n} 1/phi(k) listed in the Wikipedia link.
For the limit mean value of phi(k)/k, see A059956. (End)
The asymptotic mean of A005361. - Amiram Eldar, Apr 13 2020

Examples

			1.94359643682075920505707036257476343718785850176780571602663568890 ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.7, p. 116.
  • Joe Roberts, Lure of the Integers, Mathematical Association of America, 1992. See p. 74.

Crossrefs

Programs

  • Mathematica
    First@RealDigits[ Zeta[2]*Zeta[3]/Zeta[6], 10, 100]
    RealDigits[ 315 Zeta[3]/(2 Pi^4), 10, 111][[1]] (* Robert G. Wilson v, Aug 11 2014 *)
  • PARI
    zeta(3)*315/2/Pi^4

Formula

Decimal expansion of Product_{p prime} (1+1/p/(p-1)) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707...
The sum of the reciprocals of the powerful numbers, A001694. - T. D. Noe, May 03 2006
Equals A013661 * A002117 / A013664 = 1 / A068468 = zeta(3) * 315/(2*Pi^4) = zeta(3) * A157292.
Equals Sum_{k>=1} mu(k)^2/(k*phi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Euler totient function values, A000010). - Amiram Eldar, Aug 18 2020

Extensions

New definition from Eric W. Weisstein, May 04 2006

A119959 p^2-p+1 central polygonal numbers with prime indices A002061(prime(n)).

Original entry on oeis.org

3, 7, 21, 43, 111, 157, 273, 343, 507, 813, 931, 1333, 1641, 1807, 2163, 2757, 3423, 3661, 4423, 4971, 5257, 6163, 6807, 7833, 9313, 10101, 10507, 11343, 11773, 12657, 16003, 17031, 18633, 19183, 22053, 22651, 24493, 26407, 27723, 29757, 31863
Offset: 1

Views

Author

Alexander Adamchuk, Aug 02 2006

Keywords

Comments

Prime terms belong to A074268, which is a subset of A002383, A087126, A034915, A085104.
In every interval of prime(n)^2 integers, a(n) is the number that are not divisible by prime(n) plus the number that are divisible by prime(n)^2. - Peter Munn, Dec 12 2020

Crossrefs

Programs

  • Mathematica
    Table[Prime[n]^2-Prime[n]+1,{n,1,100}]
  • PARI
    a(n) = {my(p = prime(n)); p^2 - p + 1; } \\ Amiram Eldar, Nov 07 2022

Formula

a(n) = prime(n)^2 - prime(n) + 1.
a(n) = A036689(n)+1. - R. J. Mathar, Aug 13 2019
Product_{n>=1} (1 - 1/a(n)) = zeta(6)/(zeta(2)*zeta(3)) (A068468). - Amiram Eldar, Nov 07 2022

A336591 Numbers whose exponents in their prime factorization are either 1, 3, or both.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is zeta(6)/(zeta(2) * zeta(3)) * Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5) = 0.68428692418686231814196872579121808347231273672316377728461822629005... (Cohen, 1962).
First differs from A036537 at n = 89. A036537(89) = 128 = 2^7 is not a term of this sequence.

Examples

			1 is a term since it has no exponents, and thus it has no exponent that is not 1 or 3.
2 is a term since 2 = 2^1 has only the exponent 1 in its prime factorization.
24 is a term since 24 = 2^3 * 3^1 has the exponents 1 and 3 in its prime factorization.
		

Crossrefs

Intersection of A046100 and A036537.
Intersection of A046100 and A268335.
A005117 and A062838 are subsequences.
Cf. A068468.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[FactorInteger[n][[;;,2]], MemberQ[{1, 3}, #] &]; Select[Range[100], seqQ]
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A336591_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e==1 or e==3 for e in factorint(n).values()),count(max(startvalue,1)))
    A336591_list = list(islice(A336591_gen(),20)) # Chai Wah Wu, Jun 22 2023

A340323 Multiplicative with a(p^e) = (p + 1) * (p - 1)^(e - 1).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 8, 18, 12, 12, 14, 24, 24, 3, 18, 24, 20, 18, 32, 36, 24, 12, 24, 42, 16, 24, 30, 72, 32, 3, 48, 54, 48, 24, 38, 60, 56, 18, 42, 96, 44, 36, 48, 72, 48, 12, 48, 72, 72, 42, 54, 48, 72, 24, 80, 90, 60, 72, 62, 96, 64, 3, 84, 144, 68, 54
Offset: 1

Views

Author

Keywords

Comments

Starting with any integer and repeatedly applying the map x -> a(x) reaches the fixed point 12 or the loop {3, 4}.

Examples

			a(2^s) = 3 for all s>0.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local  t;
      mul((t[1]+1)*(t[1]-1)^(t[2]-1),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 07 2021
  • Mathematica
    fa[n_]:=fa[n]=FactorInteger[n];
    phi[1]=1; phi[p_, s_]:= (p + 1)*( p - 1)^(s - 1)
    phi[n_]:=Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i,Length[fa[n]]}];
    Array[phi, 245]
  • PARI
    A340323(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,(f[i,1]+1)*((f[i,1]-1)^(f[i,2]-1)))); \\ Antti Karttunen, Jan 06 2021

Formula

a(n) = A167344(n) / A340368(n) = A048250(n) * A326297(n). - Antti Karttunen, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/(2*zeta(2)*zeta(3))) * Product_{p prime} (1 + 2/p^2) = 0.56361239505... . - Amiram Eldar, Nov 12 2022

A333787 Fully multiplicative with a(2) = 2 and a(p) = p-1 for odd primes p.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 6, 8, 4, 8, 10, 8, 12, 12, 8, 16, 16, 8, 18, 16, 12, 20, 22, 16, 16, 24, 8, 24, 28, 16, 30, 32, 20, 32, 24, 16, 36, 36, 24, 32, 40, 24, 42, 40, 16, 44, 46, 32, 36, 32, 32, 48, 52, 16, 40, 48, 36, 56, 58, 32, 60, 60, 24, 64, 48, 40, 66, 64, 44, 48, 70, 32, 72, 72, 32, 72, 60, 48, 78, 64, 16, 80, 82, 48, 64
Offset: 1

Views

Author

Antti Karttunen, Apr 07 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Apply[Times, FactorInteger[#] /. {p_Integer, e_Integer} :> If[p == 2, 2, p - 1]^e]] &, 85]  (* Michael De Vlieger, Apr 15 2020 *)
  • PARI
    A333787(n) = { my(f=factor(n)); for(i=1,#f~,f[i,1] -= (f[i,1]%2)); factorback(f); };

Formula

Multiplicative with a(p^e) = (p-A000035(p))^e.
a(n) = A003958(n) * A006519(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/(210*zeta(3)) = (3/4) * A068468 = 0.385882... . - Amiram Eldar, Nov 10 2022

A074467 Least k such that Sum_{i=1..k} 1/phi(i) >= n.

Original entry on oeis.org

1, 2, 4, 8, 13, 22, 38, 63, 105, 177, 296, 495, 828, 1386, 2318, 3879, 6489, 10854, 18158, 30375, 50811, 84998, 142187, 237853, 397885, 665589, 1113411, 1862534, 3115683, 5211973, 8718687, 14584783, 24397699, 40812930, 68272636, 114207749, 191048868, 319590137
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 177, p. 55, Ellipses, Paris 2008.
  • E. Landau, Uber die Zahlentheoretische Function ϕ(n) und ihre Beziehung zum Goldbachschen satz, Nachrichten der Koniglichten Gesel lschaft der Wissenschaften zu Göttingen mathematisch Physikalische klasse, Jahrgang (1900), pp. 177-186.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/EulerPhi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(s,k);while(sCharles R Greathouse IV, Jan 29 2013

Formula

a(n) ~ k exp(cn) for c = zeta(6)/zeta(2)/zeta(3) = A068468 and k = exp(-gamma + A085609) = 1.0316567993311528...; see Montgomery or Koninck. - Charles R Greathouse IV, Jan 29 2013

Extensions

More terms from Ryan Propper, Jul 09 2005
a(32)-a(38) from Donovan Johnson, Aug 21 2011

A079579 Totally multiplicative with p -> (p-1)*p, p prime.

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 42, 8, 36, 40, 110, 24, 156, 84, 120, 16, 272, 72, 342, 80, 252, 220, 506, 48, 400, 312, 216, 168, 812, 240, 930, 32, 660, 544, 840, 144, 1332, 684, 936, 160, 1640, 504, 1806, 440, 720, 1012, 2162, 96, 1764, 800, 1632, 624, 2756, 432, 2200, 336
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

The Dirichlet inverse is 1, -2, -6, 0, -20, 12, -42, 0, 0, 40, -110, 0, -156, 84, 120, 0, -272, ..., i.e., the sequence defined by mu(n)*a(n). - R. J. Mathar, Dec 20 2011

Crossrefs

Programs

  • Haskell
    a079579 1 = 1
    a079579 n = product $ zipWith (*) pfs $ map (subtract 1) pfs
       where pfs = a027746_row n
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Mathematica
    f[p_, e_] := ((p - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]*(f[i,1]-1))^f[i,2]); } \\ Amiram Eldar, Oct 23 2022

Formula

a(n) <= n^2.
a(n) = n iff n = 2^k.
a(n) = n*A003958(n).
Multiplicative sequence with a(p^e) = p^e*(p-1)^e for prime p. - Jaroslav Krizek, Nov 01 2009
Dirichlet g.f.: sum_{n>=1} a(n)/n^s = Product_{primes p} 1/(1+p^(1-s)-p^(2-s)). - R. J. Mathar, Dec 20 2011
From Amiram Eldar, Oct 23 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(6)/(3*zeta(2)*zeta(3)) = 2*Pi^4/(945*zeta(3)) = A068468 / 3 = 0.171503... .
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2-p-1)) (A065488). (End)

A375074 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no higher exponents.

Original entry on oeis.org

72, 108, 200, 360, 392, 500, 504, 540, 600, 675, 756, 792, 936, 968, 1125, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1500, 1656, 1800, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2312, 2484, 2520, 2600, 2646, 2664, 2700, 2888, 2904, 2952, 3087
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers whose powerful part (A057521) is a term of A375073.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) + 1/zeta(2) - zeta(6)/(zeta(2) * zeta(3)) * c = A215267 - A088453 + A059956 - A068468 * c = 0.0156712080080470088619..., where c = Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5).

Crossrefs

Equals A046100 \ (A004709 UNION A336591).
Disjoint union of A375073 and A375075.

Programs

  • Mathematica
    Select[Range[3000], Union[Select[FactorInteger[#][[;; , 2]], # > 1 &]] == {2, 3} &]
  • PARI
    is(k) = Set(select(x -> x > 1, factor(k)[,2])) == [2, 3];

Formula

A051903(a(n)) = 3.

A375075 Numbers whose prime factorization exponents include at least one 1, at least one 2, at least one 3 and no other exponents.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2520, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3780, 3800, 3816, 3960, 3996, 4056, 4116, 4200, 4248, 4312, 4392, 4428
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

First differs from its subsequence A163569 at n = 25: a(25) = 2520 = 2^3 * 3^2 * 5 * 7 is not a term of A163569.
Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {1, 2, 3}.
The asymptotic densities of this sequence and A375074 are equal (0.0156712..., see A375074 for a formula), since the terms in A375074 that are not in this sequence (A375073) have a density 0.

Crossrefs

Intersection of A375072 and A317090.
Equals A375074 \ A375073.
Subsequence of A046100 and A176297.
A163569 is a subsequence.

Programs

  • Mathematica
    Select[Range[4500], Union[FactorInteger[#][[;; , 2]]] == {1, 2, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [1, 2, 3];
Showing 1-9 of 9 results.