cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068475 a(n) = Sum_{m=0..n} m*n^(m-1).

Original entry on oeis.org

0, 1, 5, 34, 313, 3711, 54121, 937924, 18831569, 429794605, 10987654321, 310989720966, 9652968253897, 326011399456939, 11901025061692313, 466937872906120456, 19594541482740368161, 875711370981239308953, 41524755927216069067489, 2082225625247428808306410
Offset: 0

Views

Author

Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002

Keywords

Comments

The closed form comes from taking the derivative of the closed form of A031972, for which each term of this sequence is a derivative. - Jonas Whidden, Oct 18 2011

Examples

			a(2) = Sum_{m = 1..2} m*2^(m-1) = 1 + 2*2 = 5.
		

Crossrefs

Derivative sequence of A031972.

Programs

  • Haskell
    a068475 n = sum $ zipWith (*) [1..n] $ iterate (* n) 1
    -- Reinhard Zumkeller, Nov 22 2014
    
  • Magma
    [0] cat [(&+[m*n^(m-1): m in [0..n]]): n in [1..30]]; // G. C. Greubel, Oct 13 2018
  • Maple
    a := n->sum(m*n^(m-1),m=1..n);
  • Mathematica
    Join[{0}, Table[Sum[m*n^(m-1), {m,0,n}], {n,1,30}]] (* G. C. Greubel, Oct 13 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0, 0, sum(m=0,n, m*n^(m-1))), ", ")) \\ G. C. Greubel, Oct 13 2018
    

Formula

a(1) = 1. For n > 1, a(n) = ((n-1)*(n+1)*n^n - n^(n+1) + 1)/(n-1)^2. - Jonas Whidden, Oct 18 2011
a(n) = A062806(n) / n for n>=1. - Reinhard Zumkeller, Nov 22 2014
a(n) = [x^(n-1)] 1/((1 - x)*(1 - n*x)^2). - Peter Bala, Feb 12 2024