A068501 Values m such that the consecutive pair parameters(m,m+1) generate Pythagorean triples whose odd terms are both prime.
1, 2, 5, 9, 14, 29, 30, 35, 39, 50, 65, 69, 90, 99, 135, 174, 189, 204, 224, 230, 260, 284, 285, 315, 320, 330, 369, 375, 410, 440, 464, 495, 515, 519, 525, 534, 545, 564, 575, 585, 590, 680, 719, 729, 744, 749, 765, 854, 870, 905, 915, 950, 974, 1080, 1119
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- Robert Simms, Deriving Pythagorean Triples (web archive)
Crossrefs
Cf. A051892.
Programs
-
Mathematica
lst={};Do[If[PrimeQ[(n+1)^2-n^2]&&PrimeQ[(n+1)^2+n^2],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 01 2010 *) Reap[Do[a=Prime[k];If[PrimeQ[(a^2+1)/2],Sow[(a-1)/2]],{k,2,10^5}]][[2,1]](* Zak Seidov, Apr 16 2011 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2002
Comments