A068521 Decimal expansion of agm(1, 2).
1, 4, 5, 6, 7, 9, 1, 0, 3, 1, 0, 4, 6, 9, 0, 6, 8, 6, 9, 1, 8, 6, 4, 3, 2, 3, 8, 3, 2, 6, 5, 0, 8, 1, 9, 7, 4, 9, 7, 3, 8, 6, 3, 9, 4, 3, 2, 2, 1, 3, 0, 5, 5, 9, 0, 7, 9, 4, 1, 7, 2, 3, 8, 3, 2, 6, 7, 9, 2, 6, 4, 5, 4, 5, 8, 0, 2, 5, 0, 9, 0, 0, 2, 5, 7, 4, 7, 3, 7, 1, 2, 8, 1, 8, 4, 4, 8, 4, 4, 4, 3, 2, 8, 1, 8
Offset: 1
Examples
1.45679103104690686918643238326508197497386394322130559079417238326792645458025...
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean.
- Wikipedia, Arithmetic-geometric mean.
- Index entries for transcendental numbers.
Programs
-
Maple
evalf(GaussAGM(1, 2), 144); # Alois P. Heinz, Jul 05 2023 evalf(Pi/EllipticK(sqrt(3)/2), 107); # or evalf(3*Pi/(4*EllipticK(1/3)), 107); # Vaclav Kotesovec, Mar 28 2024
-
Mathematica
RealDigits[ ArithmeticGeometricMean[1, 2], 10, 107] // First (* Jean-François Alcover, Feb 06 2013 *) RealDigits[N[3Pi/(4EllipticK[1/9]), 107]][[1]] (* Jean-François Alcover, Jun 02 2019 *) RealDigits[N[Pi/EllipticK[3/4], 107]][[1]] (* or *) RealDigits[N[Pi/(2*EllipticK[-3]), 107]][[1]] (* Vaclav Kotesovec, Mar 28 2024 *)
-
PARI
agm(1,2) \\ Charles R Greathouse IV, Mar 03 2016
Comments