A068527 Difference between smallest square >= n and n.
0, 0, 2, 1, 0, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[ Ceiling(Sqrt(n))^2-n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 11 2014
-
Maple
A068527:=n->ceil(sqrt(n))^2-n; seq(A068527(n), n=0..100); # Wesley Ivan Hurt, Jun 11 2014
-
Mathematica
Table[Ceiling[Sqrt[n]]^2-n,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
-
PARI
a(n)=if(issquare(n), 0, (sqrtint(n)+1)^2-n) \\ Charles R Greathouse IV, Oct 22 2014
-
Python
from math import isqrt def A068527(n): return 0 if n == 0 else (isqrt(n-1)+1)**2-n # Chai Wah Wu, Feb 22 2022
Formula
a(n) = A048761(n) - n = ceiling(sqrt(n))^2 - n.
G.f.: (-x^2 + (x-x^2)*Sum_{m>=1} (1+2*m)*x^(m^2))/(1-x)^2. This sum is related to Jacobi Theta functions. - Robert Israel, Nov 17 2014
Comments