A068563 Numbers k such that 2^k == 4^k (mod k).
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 80, 84, 96, 100, 108, 120, 126, 128, 136, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 240, 252, 256, 272, 288, 294, 300, 312, 320, 324, 336, 342, 360, 378, 384, 400, 408, 420, 432, 440
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Carmichael Function.
Programs
-
Mathematica
Select[Range[500], PowerMod[2,#,# ] == PowerMod[4,#,# ] & ]
-
PARI
isok(k) = Mod(2, k)^k == Mod(4, k)^k; \\ Amiram Eldar, Apr 19 2025
Extensions
Comment and Mathematica program corrected by T. D. Noe, Oct 17 2008
Comments