A068572 Numbers n such that sigma(n) = product of the squares of the decimal digits of n.
1, 1426, 2235, 13462, 45192, 67512, 95241, 119186, 134732, 152434, 165271, 263351, 541443, 1424335, 2316354, 2341535, 2521376, 3263541, 3265218, 3341572, 3652182, 4214295, 4225417, 5147324, 5232472, 6442513, 11454724, 11765416, 11976314, 12354716, 12623752, 13181665, 13322745, 13416198, 14135891, 14235642, 14513891, 16126734, 16542361, 17163642, 17235714, 18257331, 18333451, 19346152, 21352862, 21544941, 21743524, 23187129
Offset: 1
Examples
sigma(541443) = 921600 = 5^2 * 4^2 * 1^2 *4^2* 4^2 *3^2, so 541443 is a term of the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A058627.
Programs
-
Mathematica
f[n_] := Module[{a, l}, a = IntegerDigits[n]; l = Length[a]; Product[a[[i]], {i, 1, l}]^2]; Do[If[f[n] == DivisorSigma[1, n], Print[n]], {n, 2, 10^6}] Select[Range[25*10^6],DivisorSigma[1,#]==(Times@@IntegerDigits[#])^2&] (* Harvey P. Dale, Aug 29 2014 *)
Extensions
Added missing first term and a(14)-a(48) from Donovan Johnson, Nov 20 2010