cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068700 The concatenation of n with n-1 and n with n+1 both yield primes (twin primes).

Original entry on oeis.org

42, 78, 102, 108, 180, 192, 270, 300, 312, 330, 342, 390, 420, 522, 540, 612, 660, 822, 840, 882, 1002, 1140, 1230, 1272, 1482, 1542, 1632, 1770, 2100, 2190, 2682, 2742, 3072, 3198, 3408, 3642, 3828, 4242, 4452, 4572, 4740, 4788, 4998, 5622, 5718, 5832
Offset: 1

Views

Author

Amarnath Murthy, Mar 04 2002

Keywords

Comments

All terms are congruent to {0, 12, 18} mod 30. - Zak Seidov, Oct 24 2014
a(n) = 2 * A102478(n). - Reinhard Zumkeller, Jun 27 2015

Examples

			42 is a member as 4241 as well as 4243 are primes.
		

Crossrefs

Common terms of A030458 and A052089.
Intersection of A030457 and A054211; A102478.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a068700 n = a068700_list !! (n-1)
    a068700_list = isect a030457_list a054211_list
    -- Reinhard Zumkeller, Jun 27 2015
  • Maple
    filter:= proc(n)
    local d;
    d:= ilog10(n)+1;
    isprime(n*10^d+n-1) and isprime(n*10^d+n+1)
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Oct 24 2014
  • Mathematica
    d[n_]:=IntegerDigits[n]; conQ[n_]:=And@@PrimeQ[FromDigits/@{Join[d[n],d[n+1]],Join[d[n],d[n-1]]}]; Select[Range[5850],conQ[#] &] (* Jayanta Basu, May 21 2013 *)
  • PARI
    for(n=2,200, if(isprime(n*10^ceil(log(n-1)/log(10))+n-1)*isprime(n*10^ceil(log(n+1)/log(10))+n+1)==1,print1(n,",")))
    

Extensions

More terms from Benoit Cloitre, Mar 09 2002