A068722 Number of solenoidal flows (flow in = flow out) in a 3 X 3 square array with integer velocities -n .. n.
1, 35, 247, 925, 2501, 5551, 10795, 19097, 31465, 49051, 73151, 105205, 146797, 199655, 265651, 346801, 445265, 563347, 703495, 868301, 1060501, 1282975, 1538747, 1830985, 2163001, 2538251, 2960335, 3432997, 3960125, 4545751, 5194051, 5909345, 6696097, 7558915
Offset: 0
Examples
Sample flows (. represents a space): Numbers in long rows are on cell walls showing velocity rightward. Numbers in long columns are on cell floors showing velocity downwards. 3 X 3 cell centers are at the intersection of long rows and long columns. n=1: .. 0 . 0 . 0 .0. -1. -1 . 0 .. 1 . 0. -1 .0 . 0 . 0 . 0 .. 1 . 0. -1 .0 . 1 . 1 . 0 .. 0 . 0 . 0 n=2: .. 0 . 0 . 0 .0. -2. -1 . 0 .. 2. -1. -1 .0 . 0. -1 . 0 .. 2 . 0. -2 .0 . 2 . 2 . 0 .. 0 . 0 . 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Haskell
a068722 n = (1 + 2 * n + 2 * n ^ 2) * (1 + 3 * n + 3 * n ^ 2) -- Reinhard Zumkeller, Mar 23 2015
-
PARI
a(n)=(1+2*n+2*n^2)*(1+3*n+3*n^2) \\ Charles R Greathouse IV, Apr 08 2016
Formula
a(n) = (1+2*n+2*n^2) * (1+3*n+3*n^2).
G.f.: (1+30*x+82*x^2+30*x^3+x^4)/(1-x)^5. - Colin Barker, Jul 30 2012
E.g.f.: exp(x)*(1 + 34*x + 89*x^2 + 48*x^3 + 6*x^4). - Stefano Spezia, Mar 10 2024
Extensions
Formula corrected by Colin Barker, Jul 30 2012
Comments