cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A068738 Number of solenoidal flows (flow in = flow out) in an n X n square array with integer velocities in -13 .. 13.

Original entry on oeis.org

1, 27, 199655, 547436323149, 535691029084640060219
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2002

Keywords

Crossrefs

By size 3 X 3, ..., 6 X 6 A068722-A068725, by velocity limit 1..13 A068726-A068738.

Extensions

a(5) from Sean A. Irvine, Mar 10 2024

A068744 Number of potential flows in 3 X 3 array with integer velocities in -n..n, i.e., number of 3 X 3 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 1665, 87825, 1253329, 9230193, 45642289, 172989921, 542131425, 1473095713, 3582226465, 7970825457, 16492629297, 32119620625, 59427841617, 105227044417, 179360179905, 295700892993, 473379359425, 738268965841
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Comments

Let y = 2*n - 1; Then apparently a(n) = y^2*(529*y^6 + 910*y^4 + 721*y^2 + 360)/2520. See A068745 (4 X 4) and A063496 (2 X 2), which is y*(2*y^2 + 1)/3 under the same transformation. Suggests total degree N X N-1, with a factor y or y^2 to make the remaining polynomial even. - R. H. Hardin, Jan 02 2007

Crossrefs

2 X 2 A063496, 4 X 4 A068745, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

Formula

Empirical G.f.: -(x^8+1656*x^7 +72876*x^6 +522760*x^5 +972198*x^4 +522760*x^3 +72876*x^2 +1656*x +1)/(x-1)^9. [Colin Barker, Jul 31 2012]
Empirical: 315*a(n) = (4232*n^6 +12696*n^5 +17690*n^4 +14220*n^3 +7058*n^2 +2064*n +315) *(1+2*n)^2. - R. J. Mathar, Nov 09 2018

A068747 Number of potential flows in 6 X 6 array with integer velocities in -n..n, i.e., number of 6 X 6 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 12961320464027, 379827509377146575439, 40918963843906494595507077
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

Cf. 2 X 2 A063496, 3 X 3 A068744, 4 X 4 A068745, 5 X 5 A068746, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

A068745 Number of potential flows in 4 X 4 array with integer velocities in -n..n, i.e., number of 4 X 4 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 690437, 1133641543, 164185416899, 6913624013061, 138190481342321, 1678843050246451, 14285299502131463, 93044501704039945, 492225938556374973, 2204710243834695807, 8617480381892283531
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.
Cf. 4 X 4 this sequence (degree 4*4-1) with factor 2n-1 ; 3 X 3 A068744 (degree 3*3-1) with factor (2n-1)^2 ; 2 X 2 A063496 (degree 2*2-1) with factor 2n-1.

Formula

Let y = 2*n - 1; it appears that a(n) = y*(2623243666*y^14 + 9598591135*y^12 + 17180805187*y^10 + 20342655905*y^8 + 17636121503*y^6 + 10907793260*y^4 + 3135618144*y^2 + 304819200)/81729648000. - R. H. Hardin, Jan 01 2007

A068746 Number of potential flows in 5 X 5 array with integer velocities in -n..n, i.e., number of 5 X 5 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 1366395515, 184422574177355, 523957519578572209, 207345516734034667209, 24953087551680958151267, 1354915464537160758459123
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 4 X 4 A068745, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

A068761 Number of potential flows in n X n array with integer velocities in -14..14, i.e., number of n X n arrays with adjacent elements differing by no more than 14, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 16269, 105227044417, 278175212679968120043
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

By size 3 X 3, ..., 6 X 6 A068744-A068747, by velocity limit 1..14 A068248-A068761, solenoidal flows A068722-A068738.

A068726 Number of solenoidal flows (flow in = flow out) in an n X n square array with integer velocities in -1 .. 1.

Original entry on oeis.org

1, 3, 35, 2053, 569397, 758541101, 4855339973053, 149596683621380451, 22207207625437795523567, 15894065026795563049567474623, 54873022990102933765115144179983347, 914167438412564688754864863927964270928677, 73512018227635160780006728165405332017240587741389
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2002

Keywords

Crossrefs

By size 3 X 3, ..., 6 X 6 A068722-A068725, by velocity limit 1..13 A068726-A068738.

Extensions

a(12)-a(13) from Sean A. Irvine, Mar 06 2024

A068725 Number of solenoidal flows (flow in = flow out) in a 6x6 square array with integer velocities -n .. n.

Original entry on oeis.org

1, 758541101, 134771061592765, 500885416261650533, 247753867499441888279, 35922392489639958547367, 2286173927365217148894607, 80633423581611695455020595
Offset: 0

Views

Author

R. H. Hardin, Feb 26 2002

Keywords

Examples

			Sample flows (. represents a space):
Numbers in long rows are on cell walls showing velocity rightward.
Numbers in long columns are on cell floors showing velocity downwards.
6x6 cell centers are at the intersection of long rows and long columns.
n=1:
.. 0 . 0 . 0 . 0 . 0 . 0
.0. -1. -1. -1. -1. -1 . 0
.. 1 . 0 . 0 . 0 . 0. -1
.0 . 0. -1. -1. -1 . 0 . 0
.. 1 . 1 . 0 . 0. -1. -1
.0 . 0 . 0. -1 . 0 . 0 . 0
.. 1 . 1 . 1. -1. -1. -1
.0 . 0 . 0 . 1 . 0 . 0 . 0
.. 1 . 1 . 0 . 0. -1. -1
.0 . 0 . 1 . 1 . 1 . 0 . 0
.. 1 . 0 . 0 . 0 . 0. -1
.0 . 1 . 1 . 1 . 1 . 1 . 0
.. 0 . 0 . 0 . 0 . 0 . 0
n=2:
.. 0 . 0 . 0 . 0 . 0 . 0
.0. -2. -1. -1 . 0. -1 . 0
.. 2. -1 . 0. -1 . 1. -1
.0 . 0. -2. -2. -2. -1 . 0
.. 2 . 1 . 0. -1 . 0. -2
.0 . 0. -1. -2. -2 . 0 . 0
.. 2 . 2 . 1. -1. -2. -2
.0 . 0 . 0 . 1 . 0 . 0 . 0
.. 2 . 2 . 0 . 0. -2. -2
.0 . 0 . 2 . 2 . 2 . 0 . 0
.. 2 . 0 . 0 . 0 . 0. -2
.0 . 2 . 2 . 2 . 2 . 2 . 0
.. 0 . 0 . 0 . 0 . 0 . 0
		

Crossrefs

2 X 2 gives 1, 3, 5, 7..., 3 X 3 gives A068722, 4 X 4 gives A068723, 5 X 5 gives A068724, by velocity limit 1..13 A068726-A068738.

Extensions

a(4)-a(7) from Sean A. Irvine, Mar 07 2024

A255437 In positive integers: replace k^2 with the first k odd numbers.

Original entry on oeis.org

1, 2, 3, 1, 3, 5, 6, 7, 8, 1, 3, 5, 10, 11, 12, 13, 14, 15, 1, 3, 5, 7, 17, 18, 19, 20, 21, 22, 23, 24, 1, 3, 5, 7, 9, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 1, 3, 5, 7, 9, 11, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 1, 3, 5, 7, 9, 11, 13, 50, 51
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2015

Keywords

Comments

a(A005448(n)) = 1;
conjecture: a(A068722(n)) = (2*n+1)^2, i.e. A068722(n) = gives the position of the first occurrence of n-th odd square;
A164514(n) = a(A255527(n)) and a(m) < A164514(n) for m < A255527(n).

Examples

			.  A000290 | 1,    4,          9,                      16,         . . .
.  A000027 | _,2,3,___,5,6,7,8,_____,10,11,12,13,14,15,_______,17,18,...
.  A158405 | 1,    1,3,        1,3,5,                  1,3,5,7,
.  --------+-------------------------------------------------------------
.     a(n) | 1,2,3,1,3,5,6,7,8,1,3,5,10,11,12,13,14,15,1,3,5,7,17,18,19 .
		

Crossrefs

Cf. A256188, A000290, A000037, A158405, A016742, A164514, A255527, A005448, A255507 (first differences), A255508 (partial sums).

Programs

  • Haskell
    a255437 n = a255437_list !! (n-1)
    a255437_list = f 0 [1..] a158405_tabl where
       f k xs (zs:zss) = us ++ zs ++ f (k + 2) vs zss
                         where (us, v:vs) = splitAt k xs

A068748 Number of potential flows in n X n array with integer velocities in -1..1, i.e., number of n X n arrays with adjacent elements differing by no more than 1, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 19, 1665, 690437, 1366395515, 12961320464027, 590771311004409091, 129585582154154757804255, 136932044780329080616264070553, 697547669137459516115242710064880165
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

By size 3 X 3, ..., 6 X 6 A068744-A068747, by velocity limit 1..14 A068248-A068761, solenoidal flows A068722-A068738.
Showing 1-10 of 35 results. Next