A068763 Irregular triangle of the Fibonacci polynomials of A011973 multiplied diagonally by the Catalan numbers.
1, 1, 1, 2, 2, 5, 6, 1, 14, 20, 6, 42, 70, 30, 2, 132, 252, 140, 20, 429, 924, 630, 140, 5, 1430, 3432, 2772, 840, 70, 4862, 12870, 12012, 4620, 630, 14, 16796, 48620, 51480, 24024, 4620, 252, 58786, 184756, 218790
Offset: 0
Examples
The irregular triangle begins: n\m 0 1 2 3 4 5 0: 1 1: 1 1 2: 2 2 3: 5 6 1 4: 14 20 6 5: 42 70 30 2 6: 132 252 140 20 7: 429 924 630 140 5 8: 1430 3432 2772 840 70 9: 4862 12870 12012 4620 630 14 10: 16796 48620 51480 24024 4620 252 ... p(3,x) = 5 + 6*x + x^2.
Links
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 213.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
Crossrefs
Programs
-
Mathematica
nn = 10; b[z_] := (1 - Sqrt[1 - 4 z])/(2 z);Map[Select[#, # > 0 &] &, CoefficientList[Series[v b[v z] /. v -> (1 + u z ), {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Jul 24 2020 *)
Formula
a(n, m) = binomial(n+1-m, m)*C(n-m) if 0 <= m <= floor((n+1)/2), otherwise 0, with C(n) := A000108(n) (Catalan).
G.f. for column m=1, 2, ...: (x^(2*m-1))*C(m-1)/(1-4*x)^((2*m-1)/2); m=0: c(x), g.f. for A000108 (Catalan).
G.f. for row polynomials p(n, x): c(z) + x*z*c(x*(z^2)/(1-4*z))/sqrt(1-4*z) = (1-sqrt(1-4*z*(1+x*z)))/(2*z), where c(x) is the g.f. of A000108 (Catalan).
G.f. for triangle: (1 - sqrt(1 - 4*x (1 + y*x)))/(2*x). - Geoffrey Critzer, Jul 24 2020
The alternating row sums are {1,repeat 0} = {A000007(n)}{n>=0}. From the second comment p(n, x=-1) = K(1,0; n), with g.f. K(1,0; x) = 1. Or from the g.f. of the triangle with y = -1. Thanks to Aaron Li for asking for a proof. - _Wolfdieter Lang, Jan 21 2023
The series expansion of f(x) = (1 + 2sx - sqrt(1 + 4sx + 4d^2x^2))/(2x) at x = 0 is (s^2 - d^2) x + (2 d^2s - 2 s^3) x^2 + (d^4 - 6 d^2 s^2 + 5 s^4) x^3 + (-6 d^4 s + 20 d^2 s^3 - 14 s^5) x^4 + ..., containing the coefficients of this array. With s = (a+b)/2 and d = (a-b)/2, then f(x)/ab = g(x) = (1 + (a+b)x - sqrt((1+(a+b)x)^2 - 4abx^2))/(2abx) = x - (a + b) x^2 + (a^2 + 3 a b + b^2) x^3 - (a^3 + 6 a^2 b + 6 a b^2 + b^3) x^4 + ..., containing the Narayana polynomials of A001263, which can be simply transformed into A033282. The compositional inverse about the origin of g(x) is g^(-1)(x) = x/((1-ax)(1-bx)) = x/((1-(s+d)x)(1-(s-d)x)) = x + (a + b) x^2 + (a^2 + a b + b^2) x^3 + (a^3 + a^2 b + a b^2 + b^3) x^4 + ..., containing the complete homogeneous symmetric polynomials h_n(a,b) = (a^n - b^n)/(a-b), which are the polynomials of A034867 when expressed in s and d, e.g., ((s + d)^7 - (s - d)^7)/(2 d) = d^6 + 21 d^4 s^2 + 35 d^2 s^4 + 7 s^6. A133437 and A134264 for compositional inversion of o.g.f.s can be used to relate the sets of polynomials above. - Tom Copeland, Nov 28 2023
Extensions
Title changed by Tom Copeland, Dec 23 2023
Comments