A068808 Triangular numbers with strictly increasing sum of digits.
1, 3, 6, 28, 66, 78, 378, 496, 1596, 5778, 5995, 8778, 47895, 58996, 196878, 468996, 887778, 1788886, 4896885, 5897895, 13999986, 15997996, 38997696, 88877778, 179977878, 189978778, 398988876, 686999778, 1699998895, 5779898886, 9876799878, 38689969878, 39689699896, 67898888778, 89996788896, 299789989975
Offset: 1
Examples
a(4) = 28 = 7 * (7 + 1) / 2, which is 7th triangular number with sum of digits = 2 + 8 = 10. a(5) = 66 = 11 * (11 + 1) / 2, which is 11th triangular number with sum of digits = 6 + 6 = 12. Since 12 > 10, 28 and 66 are in list. - _K. D. Bajpai_, Sep 04 2014
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..55
Programs
-
Maple
dig := X->convert((convert(X,base,10)),`+`); T := k->k*(k+1)/2; S := k->seq(dig(T(i)),i=1..k-1); seq(`if`(n>1 and dig(T(n))>max(S(n)), T(n),printf("")),n=1..2000);
-
Mathematica
t = {}; s = 0; Do[If[(x = Total[IntegerDigits[y = n*(n + 1)/2]]) > s, AppendTo[t, y]; s = x], {n, 120000}]; t (* Jayanta Basu, Aug 06 2013 *)
-
PARI
tri(n)=n*(n+1)/2; A068808=List; listput(A068808,1,1); y=2;for(k=1,100000,if(sumdigits(Vec(A068808)[y-1])
A068808,tri(k),y);y++)); A068808 \\ Edward Jiang, Sep 04 2014
Extensions
More terms from Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
More terms from Sascha Kurz, Mar 27 2002
a(31) to a(33) from K. D. Bajpai, Sep 04 2014
a(34) to a(36) from Robert Israel, Sep 04 2014