cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068808 Triangular numbers with strictly increasing sum of digits.

Original entry on oeis.org

1, 3, 6, 28, 66, 78, 378, 496, 1596, 5778, 5995, 8778, 47895, 58996, 196878, 468996, 887778, 1788886, 4896885, 5897895, 13999986, 15997996, 38997696, 88877778, 179977878, 189978778, 398988876, 686999778, 1699998895, 5779898886, 9876799878, 38689969878, 39689699896, 67898888778, 89996788896, 299789989975
Offset: 1

Views

Author

Amarnath Murthy, Mar 06 2002

Keywords

Examples

			a(4) = 28 = 7 * (7 + 1) / 2, which is 7th triangular number with sum of digits = 2 + 8 = 10.  a(5) = 66 = 11 * (11 + 1) / 2, which is 11th triangular number with sum of digits = 6 + 6 = 12. Since  12 > 10, 28 and 66 are in list. - _K. D. Bajpai_, Sep 04 2014
		

Crossrefs

Programs

  • Maple
    dig := X->convert((convert(X,base,10)),`+`); T := k->k*(k+1)/2; S := k->seq(dig(T(i)),i=1..k-1); seq(`if`(n>1 and dig(T(n))>max(S(n)), T(n),printf("")),n=1..2000);
  • Mathematica
    t = {}; s = 0; Do[If[(x = Total[IntegerDigits[y = n*(n + 1)/2]]) > s, AppendTo[t, y]; s = x], {n, 120000}]; t (* Jayanta Basu, Aug 06 2013 *)
  • PARI
    tri(n)=n*(n+1)/2;
    A068808=List; listput(A068808,1,1);
    y=2;for(k=1,100000,if(sumdigits(Vec(A068808)[y-1])A068808,tri(k),y);y++)); A068808 \\ Edward Jiang, Sep 04 2014

Extensions

More terms from Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
More terms from Sascha Kurz, Mar 27 2002
a(31) to a(33) from K. D. Bajpai, Sep 04 2014
a(34) to a(36) from Robert Israel, Sep 04 2014