A067991 a(n) = k such that the k-th triangular number is A068808(n).
1, 2, 3, 7, 11, 12, 27, 31, 56, 107, 109, 132, 309, 343, 627, 968, 1332, 1891, 3129, 3434, 5291, 5656, 8831, 13332, 18972, 19492, 28248, 37067, 58309, 107516, 140547, 278172, 281743, 368507, 424256, 774325, 1247307, 2788547, 3126968, 3660565, 3949427, 7732916
Offset: 1
Keywords
Examples
a(8) = 31 because A068808(n) = 496 = 31*(31+1)/2 = A000217(31).
Programs
-
Maple
dig := X->convert((convert(X,base,10)),`+`); T := k->k*(k+1)/2; S := k->seq(dig(T(i)),i=1..k-1); seq(`if`(dig(T(i))>max(S(i)),i,printf("")),i=1..600);
Formula
a(n) = (sqrt(1 + 8*A068808(n)) - 1)/2. - Jon E. Schoenfield, Dec 30 2023
Extensions
Better name and more terms from Jon E. Schoenfield, Dec 30 2023
Comments