cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A067181 Duplicate of A062688.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 0, 0, 36, 28, 0, 66, 0, 0, 78, 0, 0, 378, 496, 0, 1596, 0, 0, 8385, 0, 0, 5778, 5995, 0, 8778, 0, 0, 47895, 0, 0, 67896, 58996, 0, 196878, 0, 0, 468996, 0, 0, 887778, 1788886, 0, 4896885, 0, 0, 5897895, 0, 0, 13999986, 15997996, 0, 38997696
Offset: 0

Views

Author

Amarnath Murthy, Jan 09 2002

Keywords

Crossrefs

Cf. A055264.

Formula

a(n) = A062688(n), n > 0. - R. J. Mathar, Sep 30 2008

Extensions

More terms from Sascha Kurz, Mar 23 2002

A004157 Sum of digits of n-th triangular number.

Original entry on oeis.org

0, 1, 3, 6, 1, 6, 3, 10, 9, 9, 10, 12, 15, 10, 6, 3, 10, 9, 9, 10, 3, 6, 10, 15, 3, 10, 9, 18, 10, 12, 15, 19, 15, 12, 19, 9, 18, 10, 12, 15, 10, 15, 12, 19, 18, 9, 10, 12, 15, 10, 15, 12, 19, 9, 18, 10, 21, 15, 10, 15, 12, 19, 18, 9, 10, 12, 6, 19, 15, 12, 19, 18, 18, 10, 21, 15, 19, 6, 12, 10
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+Intseq(n*(n+1) div 2): n in [0..80] ]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    seq(convert(convert(n*(n+1)/2,base,10),`+`), n=0..100); # Robert Israel, Jun 18 2015
  • Mathematica
    Table[Plus@@IntegerDigits@(n (n + 1) / 2), {n, 0, 90}] (* Vincenzo Librandi, Jun 18 2015 *)
    Total[IntegerDigits[#]]&/@Accumulate[Range[0,100]] (* Harvey P. Dale, Mar 31 2024 *)
  • PARI
    a(n) = sumdigits(n*(n+1)/2); \\ Michel Marcus, Jun 18 2015

Formula

a(n) = A007953(A000217(n)). - Robert Israel, Jun 18 2015

A068129 Triangular numbers with sum of digits = 10.

Original entry on oeis.org

28, 55, 91, 136, 190, 253, 325, 406, 703, 820, 1081, 1225, 1540, 1711, 2080, 2701, 3160, 3403, 5050, 7021, 10153, 11026, 12403, 15400, 17020, 20503, 21115, 23005, 24310, 32131, 41041, 51040, 52003, 60031, 72010, 80200, 90100, 106030, 110215
Offset: 1

Views

Author

Amarnath Murthy, Feb 21 2002

Keywords

Comments

1. The sequence is unbounded, as the (2*10^k +2)-th triangular number is a term. 2. The sum of the digits of triangular numbers in most cases is a triangular number. 3. Conjecture: For every triangular number T there exist infinitely many triangular numbers with sum of digits = T.
The second assertion above is wrong. Out of the first 100,000 triangular numbers, only 26,046 have a sum of their digits equal to a triangular number. - Harvey P. Dale, Jun 07 2017

Crossrefs

Intersection of A000217 and A052224.

Programs

  • Maple
    for i from 1 to 9 do S[1,i]:= [i] od: S[1,10]:= []:
    R:= NULL: count:= 0:
    for d from 2 while count < 100 do
      for i from 1 to 10 do
        S[d,i]:= [seq(op(map(t -> 10*t + j, S[d-1,i-j])),j=0..i-1)];
      od:
      V:= select(t -> issqr(8*t+1), S[d,10]);
      if nops(V) > 0 then
        V:= sort(V);
        R:= R,op(V); count:= count+nops(V);
      fi
    od:
    R; # Robert Israel, May 15 2025
  • Mathematica
    Select[Accumulate[Range[1000]],Total[IntegerDigits[#]]==10&] (* Harvey P. Dale, Jun 07 2017 *)

Extensions

More terms from Sascha Kurz, Mar 06 2002
Offset changed by Andrew Howroyd, Sep 17 2024

A068808 Triangular numbers with strictly increasing sum of digits.

Original entry on oeis.org

1, 3, 6, 28, 66, 78, 378, 496, 1596, 5778, 5995, 8778, 47895, 58996, 196878, 468996, 887778, 1788886, 4896885, 5897895, 13999986, 15997996, 38997696, 88877778, 179977878, 189978778, 398988876, 686999778, 1699998895, 5779898886, 9876799878, 38689969878, 39689699896, 67898888778, 89996788896, 299789989975
Offset: 1

Views

Author

Amarnath Murthy, Mar 06 2002

Keywords

Examples

			a(4) = 28 = 7 * (7 + 1) / 2, which is 7th triangular number with sum of digits = 2 + 8 = 10.  a(5) = 66 = 11 * (11 + 1) / 2, which is 11th triangular number with sum of digits = 6 + 6 = 12. Since  12 > 10, 28 and 66 are in list. - _K. D. Bajpai_, Sep 04 2014
		

Crossrefs

Programs

  • Maple
    dig := X->convert((convert(X,base,10)),`+`); T := k->k*(k+1)/2; S := k->seq(dig(T(i)),i=1..k-1); seq(`if`(n>1 and dig(T(n))>max(S(n)), T(n),printf("")),n=1..2000);
  • Mathematica
    t = {}; s = 0; Do[If[(x = Total[IntegerDigits[y = n*(n + 1)/2]]) > s, AppendTo[t, y]; s = x], {n, 120000}]; t (* Jayanta Basu, Aug 06 2013 *)
  • PARI
    tri(n)=n*(n+1)/2;
    A068808=List; listput(A068808,1,1);
    y=2;for(k=1,100000,if(sumdigits(Vec(A068808)[y-1])A068808,tri(k),y);y++)); A068808 \\ Edward Jiang, Sep 04 2014

Extensions

More terms from Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
More terms from Sascha Kurz, Mar 27 2002
a(31) to a(33) from K. D. Bajpai, Sep 04 2014
a(34) to a(36) from Robert Israel, Sep 04 2014

A359003 a(n) is the smallest n-gonal number whose sum of digits is n.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 370, 506, 156, 238, 671, 726, 88, 836, 585, 775, 7337, 5268, 8149, 8555, 8961, 9367, 9773, 15786, 9856, 91964, 65757, 89428, 179960, 47796, 108979, 197945, 86976, 467974, 998516, 259896, 598792, 1737788, 869649, 969991, 1985984, 998676, 3798496, 7979546, 5877696
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 10 2022

Keywords

Examples

			370 is the smallest 10-gonal number with digit sum 10, so a(10) = 370.
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := (n - 2)*k*(k - 1)/2 + k; a[n_] := Module[{k = 1, pk}, While[Plus @@ IntegerDigits[pk = p[n, k]] != n, k++]; pk]; Array[a, 45, 3] (* Amiram Eldar, Dec 10 2022 *)
Showing 1-5 of 5 results.