A068873 Smallest prime which is a sum of n distinct primes.
2, 5, 19, 17, 43, 41, 79, 83, 127, 131, 199, 197, 283, 281, 379, 389, 499, 509, 643, 641, 809, 809, 983, 971, 1171, 1163, 1381, 1373, 1609, 1607, 1861, 1861, 2137, 2137, 2437, 2441, 2749, 2767, 3109, 3109, 3457, 3457, 3833, 3847, 4243, 4241, 4663, 4679, 5119
Offset: 1
Keywords
Examples
a(3) = 19 as 19 is the smallest prime which can be expressed as the sum of three primes as 19 = 3 + 5 + 11. a(4) = 17= 2+3+5+7. a(2)=A038609(1). a(3)=A124867(7). Further examples in A102330.
References
- Shantanu Dey & Moloy De, Two conjectures on prime numbers, Journal of Recreational Mathematics, Vol. 36 (3), pp 205-206. Baywood Publ. Co, Amityville NY 2011.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 200 terms from Jean-François Alcover)
- Jean-François Alcover, Conjectured terms up to a(200).
Programs
-
Maple
# Number of ways to write n as a sum of k distinct primes, the smallest # being smalp sumkprims := proc(n,k,smalp) option remember; local a,res,pn; res := n-smalp ; if res < 0 then return 0; elif res > 0 and k <=0 then return 0; elif res = 0 and k = 1 then return 1; else pn := nextprime(smalp) ; a := 0 ; while pn <= res do a := a+procname(res,k-1,pn) ; pn := nextprime(pn) ; end do: a ; end if; end proc: # Number of ways of writing n as a sum of k distinct primes A000586k := proc(n,k) local a,i,smalp ; a := 0 ; for i from 1 do smalp := ithprime(i) ; if k*smalp > n then return a; end if; a := a+sumkprims(n,k,smalp) ; end do: end proc: # Smallest prime which is a sum of n distinct primes A068873 := proc(n) local a,i; a := A007504(n) ; a := nextprime(a-1) ; for i from 1 do if A000586k(a,n) > 0 then return a; end if; a := nextprime(a) ; end do: end proc: # R. J. Mathar, May 04 2014
-
PARI
a(n)= { my(P=primes(n), k=n, t, res = oo); while(1, forvec(v=vector(n-1, i, [1, k-1]), t=sum(i=1, n-1, P[v[i]])+P[k]; if(isprime(t), res = min(res, t); ) , 2 \\ flag: only strictly increasing vectors v ); P=concat(P, nextprime(P[k]+1)); k++; if(P[k] + sum(i = 1+bitand(n,1), n-1+bitand(n,1), P[i]) > res, return(res) ) ); } \\ Charles R Greathouse IV, Sep 19 2015; corrected by David A. Corneth, May 12 2025
Formula
Extensions
More terms from Sascha Kurz, Feb 03 2003
Corrected by Ray Chandler, Feb 02 2005
Comments