cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068873 Smallest prime which is a sum of n distinct primes.

Original entry on oeis.org

2, 5, 19, 17, 43, 41, 79, 83, 127, 131, 199, 197, 283, 281, 379, 389, 499, 509, 643, 641, 809, 809, 983, 971, 1171, 1163, 1381, 1373, 1609, 1607, 1861, 1861, 2137, 2137, 2437, 2441, 2749, 2767, 3109, 3109, 3457, 3457, 3833, 3847, 4243, 4241, 4663, 4679, 5119
Offset: 1

Views

Author

Amarnath Murthy, Mar 19 2002

Keywords

Comments

Conjectured terms a(50)-a(76): 5147, 5623, 5591, 6079, 6101, 6599, 6607, 7151, 7151, 7699, 7699, 8273, 8293, 8893, 8893, 9521, 9547, 10211, 10223, 10889, 10891, 11597, 11617, 12343, 12373, 13099, 13127. - Jean-François Alcover, Apr 22 2020

Examples

			a(3) = 19 as 19 is the smallest prime which can be expressed as the sum of three primes as 19 = 3 + 5 + 11.
a(4) = 17= 2+3+5+7. a(2)=A038609(1). a(3)=A124867(7). Further examples in A102330.
		

References

  • Shantanu Dey & Moloy De, Two conjectures on prime numbers, Journal of Recreational Mathematics, Vol. 36 (3), pp 205-206. Baywood Publ. Co, Amityville NY 2011.

Crossrefs

Programs

  • Maple
    # Number of ways to write n as a sum of k distinct primes, the smallest
    # being smalp
    sumkprims := proc(n,k,smalp)
        option remember;
        local a,res,pn;
        res := n-smalp ;
        if res < 0 then
            return 0;
        elif res > 0 and k <=0 then
            return 0;
        elif res = 0 and k = 1 then
            return 1;
        else
            pn := nextprime(smalp) ;
            a := 0 ;
            while pn <= res do
                a := a+procname(res,k-1,pn) ;
                pn := nextprime(pn) ;
            end do:
            a ;
        end if;
    end proc:
    # Number of ways of writing n as a sum of k distinct primes
    A000586k := proc(n,k)
        local a,i,smalp ;
        a := 0 ;
        for i from 1 do
            smalp := ithprime(i) ;
            if k*smalp > n then
                return a;
            end if;
            a := a+sumkprims(n,k,smalp) ;
        end do:
    end proc:
    # Smallest prime which is a sum of n distinct primes
    A068873 := proc(n)
        local a,i;
        a := A007504(n) ;
        a := nextprime(a-1) ;
        for i from 1 do
            if A000586k(a,n) > 0 then
                return a;
            end if;
            a := nextprime(a) ;
        end do:
    end proc: # R. J. Mathar, May 04 2014
  • PARI
    a(n)=
    {
        my(P=primes(n), k=n, t, res = oo);
        while(1,
            forvec(v=vector(n-1, i, [1, k-1]),
                t=sum(i=1, n-1, P[v[i]])+P[k];
                if(isprime(t),
    		res = min(res, t);
    	   )
            ,
                2 \\ flag: only strictly increasing vectors v
            );
            P=concat(P, nextprime(P[k]+1));
            k++;
    	if(P[k] + sum(i = 1+bitand(n,1), n-1+bitand(n,1), P[i]) > res,
    		return(res)
    	)
        );
    }
    \\ Charles R Greathouse IV, Sep 19 2015; corrected by David A. Corneth, May 12 2025

Formula

Min(a(n), A073619(n)) = A007504(n) for n > 1. - Jonathan Sondow, Jul 10 2012

Extensions

More terms from Sascha Kurz, Feb 03 2003
Corrected by Ray Chandler, Feb 02 2005