A102330
Triangle read by rows: n-th row consists of the lexicographically earliest set of n distinct primes whose sum is A068873(n).
Original entry on oeis.org
2, 2, 3, 3, 5, 11, 2, 3, 5, 7, 3, 5, 7, 11, 17, 2, 3, 5, 7, 11, 13, 3, 5, 7, 11, 13, 17, 23, 2, 3, 5, 7, 11, 13, 19, 23, 3, 5, 7, 11, 13, 17, 19, 23, 29, 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 3, 5, 7, 11, 13, 17
Offset: 1
Triangle begins:
2
2,3
3,5,11
2,3,5,7
3,5,7,11,17
2,3,5,7,11,13
3,5,7,11,13,17,23
2,3,5,7,11,13,19,23
3,5,7,11,13,17,19,23,29
2,3,5,7,11,13,17,19,23,31
3,5,7,11,13,17,19,23,29,31,41
2,3,5,7,11,13,17,19,23,29,31,37
3,5,7,11,13,17,19,23,29,31,37,41,47
2,3,5,7,11,13,17,19,23,29,31,37,41,43
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
By definition, row sums are
A068873.
-
g:= proc(n,k,m) option remember; # lex earliest set of k distinct primes > m with sum n
local q,v;
if k = 1 then
if isprime(n) and n > m then return [n] else return NULL fi
fi;
q:= m;
do
q:= nextprime(q);
if n < k*q then return NULL fi;
v:= procname(n-q,k-1,q);
if v <> NULL then return [q,op(v)] fi
od
end proc:
f:= proc(k)
local p,i,v;
p:= add(ithprime(i),i=1..k)-1;
do
p:= nextprime(p);
v:= g(p,k,0);
if v <> NULL then return v fi
od
end proc:
for k from 1 to 30 do
f(k)
od; # Robert Israel, May 12 2025
-
(* Computation verified with A068873. *)
row[n_] := Module[{s, m}, s = Select[{#, Total[#]}& /@ Subsets[ Prime[ Range[n+4]], {n}], PrimeQ[#[[2]]]&]; m = MinimalBy[s, #[[2]]&, 1]; If[s != {}, Return[m[[1, 1]]]]];
Array[row, 49] // Flatten (* Jean-François Alcover, Apr 23 2020 *)
A007504
Sum of the first n primes.
Original entry on oeis.org
0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0
- E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
- H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. J. Mathar, Table of n, a(n) for n = 0..100000
- C. Axler, On a Sequence involving Prime Numbers, J. Int. Seq. 18 (2015) # 15.7.6.
- Christian Axler, New bounds for the sum of the first n prime numbers, arXiv:1606.06874 [math.NT], 2016.
- P. Hecht, Post-Quantum Cryptography: S_381 Cyclic Subgroup of High Order, International Journal of Advanced Engineering Research and Science (IJAERS, 2017) Vol. 4, Issue 6, 78-86.
- R. J. Mathar, Table of 100000n, a(100000n) for n = 1..10000
- Romeo Meštrović, Curious conjectures on the distribution of primes among the sums of the first 2n primes, arXiv:1804.04198 [math.NT], 2018.
- Vladimir Shevelev, Asymptotics of sum of the first n primes with a remainder term
- Nilotpal Kanti Sinha, On the asymptotic expansion of the sum of the first n primes, arXiv:1011.1667 [math.NT], 2010-2015.
- Lawrence C. Washington, Sums of Powers of Primes II, arXiv preprint (2022). arXiv:2209.12845 [math.NT]
- Eric Weisstein's World of Mathematics, Prime Sums
- OEIS Wiki, Sums of powers of primes divisibility sequences
Cf.
A000041,
A034386,
A111287,
A013916,
A013918 (primes),
A045345,
A050247,
A050248,
A068873,
A073619,
A034387,
A014148,
A014150,
A178138,
A254784,
A254858.
See
A122989 for the value of Sum_{n >= 1} 1/a(n).
-
P:=Filtered([1..250],IsPrime);;
a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
-
a007504 n = a007504_list !! n
a007504_list = scanl (+) 0 a000040_list
-- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
-
[0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
-
s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1;
A007504 := proc(n)
add(ithprime(i), i=1..n) ;
end proc: # R. J. Mathar, Sep 20 2015
-
Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)
primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
-
A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
-
a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
-
from itertools import accumulate, count, islice
from sympy import prime
def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0))
A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022
A073619
a(1) = 0; a(n) = smallest composite number which is a sum of n distinct primes.
Original entry on oeis.org
0, 8, 10, 21, 28, 45, 58, 77, 100, 129, 160, 201, 238, 285, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 1
a(4) = 21 as 21 = 2+3+5+11 is the smallest composite number expressible as sum of four distinct primes.
A383725
a(n) is the least number k such that omega(k) = n and the largest prime factor of k equals the sum of its remaining prime factors, where omega(k) = A001221(k).
Original entry on oeis.org
30, 3135, 3570, 844305, 1231230, 463798335, 1089218130, 410825520105, 905980145070, 818186519485335, 1461885412557570, 2023416377587710105, 3676255934199278430, 6175645531427513476335, 14590719651042312667890, 29263451149172039260325865, 67794672364404337821058590
Offset: 3
a(3) = 30 is the smallest number having 3 distinct prime factors (namely 2, 3, and 5) such that the largest one is the sum of the others (2 + 3 = 5).
a(4) = 3135 is the smallest number having 4 distinct prime factors (namely 3, 5, 11 and 19) such that the largest one is the sum of the others (3 + 5 + 11 = 19).
-
isok(k, n) = my(f=factor(k)); (omega(f)==n) && (vecsum(f[,1]) == 2*vecmax(f[,1]));
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, May 08 2025
A286263
The smallest weight possible for a prime vector of order n.
Original entry on oeis.org
2, 8, 19, 26, 43, 56, 79, 104, 127, 166, 223, 258, 307, 348
Offset: 1
The best solution for n=5 is (3,11,5,7,17) with a weight of 43. This is a prime vector because all the generated sums are prime: 3+11+5=19, 11+5+7=23, 5+7+17=29, 3+11+5+7+17=43.
A073620
a(1) = 0; a(n) = smallest prime number which is a sum of n distinct composite numbers.
Original entry on oeis.org
0, 13, 19, 29, 37, 53, 67, 79, 97, 127, 137, 157, 179, 199, 227, 251, 277, 307, 337, 367, 401, 439, 479, 509, 547, 587, 631, 673, 709, 757, 809, 853, 907, 947, 997, 1049, 1103, 1163, 1217, 1277, 1361, 1399, 1451, 1523, 1579
Offset: 1
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003
A073621
Smallest composite number which is a sum of n distinct composite numbers.
Original entry on oeis.org
4, 10, 18, 27, 39, 49, 63, 78, 94, 112, 132, 153, 175, 200, 224, 250, 278, 305, 335, 368, 400, 434, 469, 505, 543, 582, 622, 664, 708, 753, 799, 847, 896, 946, 998, 1052, 1104, 1158, 1214, 1271, 1329, 1389, 1452, 1514, 1578, 1643, 1711, 1778, 1846
Offset: 1
A100694
Smallest prime equal to the sum of exactly 2n+1 distinct odd primes.
Original entry on oeis.org
3, 19, 43, 79, 127, 199, 283, 379, 499, 643, 809, 983, 1171, 1381, 1609, 1861, 2137, 2437, 2749, 3109, 3457, 3833, 4243, 4663, 5119, 5623, 6079, 6599, 7151, 7699, 8273, 8893, 9521, 10211, 10889, 11597, 12343, 13099, 13903, 14713, 15559, 16411, 17291
Offset: 1
a(1) = 19 = 3+5+11;
a(2) = 43 = 3+5+7+11+17;
a(3) = 79 = 3+5+7+11+13+17+23;
a(4) = 127 = 3+5+7+11+13+17+19+23+29.
Showing 1-8 of 8 results.
Comments