cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A102330 Triangle read by rows: n-th row consists of the lexicographically earliest set of n distinct primes whose sum is A068873(n).

Original entry on oeis.org

2, 2, 3, 3, 5, 11, 2, 3, 5, 7, 3, 5, 7, 11, 17, 2, 3, 5, 7, 11, 13, 3, 5, 7, 11, 13, 17, 23, 2, 3, 5, 7, 11, 13, 19, 23, 3, 5, 7, 11, 13, 17, 19, 23, 29, 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 3, 5, 7, 11, 13, 17
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 30 2005

Keywords

Examples

			Triangle begins:
  2
  2,3
  3,5,11
  2,3,5,7
  3,5,7,11,17
  2,3,5,7,11,13
  3,5,7,11,13,17,23
  2,3,5,7,11,13,19,23
  3,5,7,11,13,17,19,23,29
  2,3,5,7,11,13,17,19,23,31
  3,5,7,11,13,17,19,23,29,31,41
  2,3,5,7,11,13,17,19,23,29,31,37
  3,5,7,11,13,17,19,23,29,31,37,41,47
  2,3,5,7,11,13,17,19,23,29,31,37,41,43
  3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
		

Crossrefs

By definition, row sums are A068873.

Programs

  • Maple
    g:= proc(n,k,m) option remember; # lex earliest set of k distinct primes > m with sum n
       local q,v;
      if k = 1 then
        if isprime(n) and n > m then return [n] else return NULL fi
      fi;
      q:= m;
      do
        q:= nextprime(q);
        if n < k*q then return NULL fi;
        v:= procname(n-q,k-1,q);
        if v <> NULL then return [q,op(v)] fi
      od
    end proc:
    f:= proc(k)
    local p,i,v;
    p:= add(ithprime(i),i=1..k)-1;
    do
      p:= nextprime(p);
      v:= g(p,k,0);
      if v <> NULL then return v fi
    od
    end proc:
    for k from 1 to 30 do
      f(k)
    od; # Robert Israel, May 12 2025
  • Mathematica
    (* Computation verified with A068873. *)
    row[n_] := Module[{s, m}, s = Select[{#, Total[#]}& /@ Subsets[ Prime[ Range[n+4]], {n}], PrimeQ[#[[2]]]&]; m = MinimalBy[s, #[[2]]&, 1]; If[s != {}, Return[m[[1, 1]]]]];
    Array[row, 49] // Flatten (* Jean-François Alcover, Apr 23 2020 *)

Extensions

Edited, corrected and extended by Ray Chandler, Feb 02 2005
Edited by N. J. A. Sloane, May 07 2014

A007504 Sum of the first n primes.

Original entry on oeis.org

0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n)^2 - a(n-1)^2 = A034960(n). - Gary Detlefs, Dec 20 2011
This is true. Proof: By definition we have A034960(n) = Sum_{k = (a(n-1)+1)..a(n)} (2*k-1). Since Sum_{k = 1..n} (2*k-1) = n^2, it follows A034960(n) = a(n)^2 - a(n-1)^2, for n > 1. - Hieronymus Fischer, Sep 27 2012 [formulas above adjusted to changed offset of A034960 - Hieronymus Fischer, Oct 14 2012]
Row sums of the triangle in A037126. - Reinhard Zumkeller, Oct 01 2012
Ramanujan noticed the apparent identity between the prime parts partition numbers A000607 and the expansion of Sum_{k >= 0} x^a(k)/((1-x)...(1-x^k)), cf. A046676. See A192541 for the difference between the two. - M. F. Hasler, Mar 05 2014
For n > 0: row 1 in A254858. - Reinhard Zumkeller, Feb 08 2015
a(n) is the smallest number that can be partitioned into n distinct primes. - Alonso del Arte, May 30 2017
For a(n) < m < a(n+1), n > 0, at least one m is a perfect square.
Proof: For n = 1, 2, ..., 6, the proposition is clear. For n > 6, a(n) < ((prime(n) - 1)/2)^2, set (k - 1)^2 <= a(n) < k^2 < ((prime(n) + 1)/2)^2, then k^2 < (k - 1)^2 + prime(n) <= a(n) + prime(n) = a(n+1), so m = k^2 is this perfect square. - Jinyuan Wang, Oct 04 2018
For n >= 5 we have a(n) < ((prime(n)+1)/2)^2. This can be shown by noting that ((prime(n)+1)/2)^2 - ((prime(n-1)+1)/2)^2 - prime(n) = (prime(n)+prime(n-1))*(prime(n)-prime(n-1)-2)/4 >= 0. - Jianing Song, Nov 13 2022
Washington gives an oscillation formula for |a(n) - pi(n^2)|, see links. - Charles R Greathouse IV, Dec 07 2022

References

  • E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A122989 for the value of Sum_{n >= 1} 1/a(n).

Programs

  • GAP
    P:=Filtered([1..250],IsPrime);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
    
  • Haskell
    a007504 n = a007504_list !! n
    a007504_list = scanl (+) 0 a000040_list
    -- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
    
  • Magma
    [0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
    
  • Maple
    s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1;
    A007504 := proc(n)
        add(ithprime(i), i=1..n) ;
    end proc: # R. J. Mathar, Sep 20 2015
  • Mathematica
    Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)
    primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
  • PARI
    A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
    
  • PARI
    a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0))
    A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022

Formula

a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)
a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009
a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009
a(A051838(n)) = A002110(A051838(n)) / A116536(n). - Reinhard Zumkeller, Oct 03 2011
a(n) = min(A068873(n), A073619(n)) for n > 1. - Jonathan Sondow, Jul 10 2012
a(n) = A033286(n) - A152535(n). - Omar E. Pol, Aug 09 2012
For n >= 3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013
a(n) = (n^2/2)*(log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015
G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
a(n) = A008472(A002110(n)), for n > 0. - Michel Marcus, Jul 16 2020

Extensions

More terms from Stefan Steinerberger, Apr 11 2006
a(0) = 0 prepended by M. F. Hasler, Mar 05 2014

A073619 a(1) = 0; a(n) = smallest composite number which is a sum of n distinct primes.

Original entry on oeis.org

0, 8, 10, 21, 28, 45, 58, 77, 100, 129, 160, 201, 238, 285, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 1

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Examples

			a(4) = 21 as 21 = 2+3+5+11 is the smallest composite number expressible as sum of four distinct primes.
		

Crossrefs

Formula

Min(a(n), A068873(n)) = A007504(n) for n > 1. - Jonathan Sondow, Jul 10 2012

Extensions

More terms from Sascha Kurz, Feb 03 2003

A383725 a(n) is the least number k such that omega(k) = n and the largest prime factor of k equals the sum of its remaining prime factors, where omega(k) = A001221(k).

Original entry on oeis.org

30, 3135, 3570, 844305, 1231230, 463798335, 1089218130, 410825520105, 905980145070, 818186519485335, 1461885412557570, 2023416377587710105, 3676255934199278430, 6175645531427513476335, 14590719651042312667890, 29263451149172039260325865, 67794672364404337821058590
Offset: 3

Views

Author

Paolo Xausa, May 07 2025

Keywords

Comments

a(n) and n have opposite parity. - David A. Corneth, May 08 2025

Examples

			a(3) = 30 is the smallest number having 3 distinct prime factors (namely 2, 3, and 5) such that the largest one is the sum of the others (2 + 3 = 5).
a(4) = 3135 is the smallest number having 4 distinct prime factors (namely 3, 5, 11 and 19) such that the largest one is the sum of the others (3 + 5 + 11 = 19).
		

Crossrefs

Programs

  • PARI
    isok(k, n) = my(f=factor(k)); (omega(f)==n) && (vecsum(f[,1]) == 2*vecmax(f[,1]));
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, May 08 2025

Formula

a(n) = (Product_{i=1..n-1} A102330(n-1,i))*A068873(n-1).
a(n) = A383726(n,1).
a(n) >= A002110(n).

A286263 The smallest weight possible for a prime vector of order n.

Original entry on oeis.org

2, 8, 19, 26, 43, 56, 79, 104, 127, 166, 223, 258, 307, 348
Offset: 1

Views

Author

Dmitry Kamenetsky, May 05 2017

Keywords

Comments

A prime vector of order n is an array of n distinct primes P = (p_1, p_2, ..., p_n), such that every sum of an odd number of consecutive elements is also prime. The weight of the prime vector is the sum of its elements. For full details see Kamenetsky's paper.
Calculations by Kamenetsky and J. K. Andersen show that a(15-17) are likely to be 443, 522 and 641.
Calculations by J. K. Andersen show that a(18-21) are likely to be 762, 881, 1002 and 1259.
J. K. Andersen found the best upper bounds for a(22-23) as 1716 and 1931.
For odd n, a(n) <= A068873(n) (smallest prime which is a sum of n distinct primes).
For even n, a(n) <= A071148(n) (sum of the first n odd primes).

Examples

			The best solution for n=5 is (3,11,5,7,17) with a weight of 43. This is a prime vector because all the generated sums are prime: 3+11+5=19, 11+5+7=23, 5+7+17=29, 3+11+5+7+17=43.
		

Crossrefs

A073620 a(1) = 0; a(n) = smallest prime number which is a sum of n distinct composite numbers.

Original entry on oeis.org

0, 13, 19, 29, 37, 53, 67, 79, 97, 127, 137, 157, 179, 199, 227, 251, 277, 307, 337, 367, 401, 439, 479, 509, 547, 587, 631, 673, 709, 757, 809, 853, 907, 947, 997, 1049, 1103, 1163, 1217, 1277, 1361, 1399, 1451, 1523, 1579
Offset: 1

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Crossrefs

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A073621 Smallest composite number which is a sum of n distinct composite numbers.

Original entry on oeis.org

4, 10, 18, 27, 39, 49, 63, 78, 94, 112, 132, 153, 175, 200, 224, 250, 278, 305, 335, 368, 400, 434, 469, 505, 543, 582, 622, 664, 708, 753, 799, 847, 896, 946, 998, 1052, 1104, 1158, 1214, 1271, 1329, 1389, 1452, 1514, 1578, 1643, 1711, 1778, 1846
Offset: 1

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Crossrefs

Extensions

More terms from Sascha Kurz, Feb 03 2003
Duplicated a(15)-a(16) removed by Sean A. Irvine, Dec 11 2024

A100694 Smallest prime equal to the sum of exactly 2n+1 distinct odd primes.

Original entry on oeis.org

3, 19, 43, 79, 127, 199, 283, 379, 499, 643, 809, 983, 1171, 1381, 1609, 1861, 2137, 2437, 2749, 3109, 3457, 3833, 4243, 4663, 5119, 5623, 6079, 6599, 7151, 7699, 8273, 8893, 9521, 10211, 10889, 11597, 12343, 13099, 13903, 14713, 15559, 16411, 17291
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 08 2004

Keywords

Examples

			a(1) = 19 = 3+5+11;
a(2) = 43 = 3+5+7+11+17;
a(3) = 79 = 3+5+7+11+13+17+23;
a(4) = 127 = 3+5+7+11+13+17+19+23+29.
		

Crossrefs

Cf. A068873.

Extensions

Edited, corrected and extended by Ray Chandler, Apr 30 2007
Showing 1-8 of 8 results.