cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067688 Composite n such that for some integer r, n equals the sum of the r-th powers of the prime factors of n (counted with multiplicity).

Original entry on oeis.org

4, 16, 27, 256, 3125, 19683, 65536, 823543, 1096744, 2836295, 4294967296, 4473671462, 23040925705, 285311670611, 7625597484987, 13579716377989, 119429556097859, 302875106592253
Offset: 1

Views

Author

Joseph L. Pe, Feb 04 2002

Keywords

Comments

Every prime is the sum of the first powers of its prime factors, so only composite numbers have been considered in this sequence.
Every integer of the form p^p^k with p prime and k>0 is in the sequence, since it equals the sum of the (p^k - k)-th powers of its prime factors. The first 8 terms of the sequence are of this form, but 1096744 = 2^3*11^3*103 and 2836295 = 5*7*11*53*139 are not.
4473671462 = 2*13*179*593*1621 is also not a prime power.
a(15) <= 7625597484987. a(16) <= 302875106592253. - Donovan Johnson, May 17 2010
a(16) <= 13579716377989, a(17) <= 119429556097859, a(18) <= 302875106592253. - Jud McCranie, Feb 09 2016
a(19) <= 298023223876953125. - Jud McCranie, Apr 25 2016

Examples

			The sum of the cubes of the prime factors of 1096744 is 3*2^3 + 3*11^3 + 103^3 = 1096744.
		

Crossrefs

Cf. A068916, A081177 (for values of r), A268036 (for a subsequence).

Programs

  • Mathematica
    For[n=2, True, n++, If[ !PrimeQ[n], For[r=1; fn=FactorInteger[n]; s=0, s<=n, r++, s=Plus@@((#[[2]]#[[1]]^r)&/@fn); If[s==n, Print[{n, r}]]]]]
  • PARI
    is(n)=if(isprime(n)||n<4, return(0)); my(f=factor(n),t=#f~); for(r=1,logint(n\f[t,2],f[t,1]), if(sum(i=1,t,f[i,2]*f[i,1]^r)==n, return(1))); 0 \\ Charles R Greathouse IV, Jan 30 2016

Extensions

Edited by Dean Hickerson, Mar 07 2002
More terms from Jud McCranie, Mar 10 2003
a(13)-a(14) from Donovan Johnson, May 17 2010
a(15) confirmed by Jud McCranie, Jan 30 2016
a(16) from Jud McCranie, Feb 13 2016
a(17) from Jud McCranie, Mar 20 2016
a(18) from Jud McCranie, Apr 23 2016

A268594 Numbers n of the form p^k - k = q^i - i for primes p < q.

Original entry on oeis.org

2, 12, 58, 238, 3120, 6856, 29788, 50650, 65520, 161046, 262126, 300760, 1295026, 3442948, 9393928, 13997518, 21253930, 49430860, 84604516, 95443990, 237176656, 329939368, 384240580, 487443400, 633839776, 893871732, 904231060, 1284365500, 1605723208, 3183010108, 3301293166, 3588604288, 3936827536
Offset: 1

Views

Author

Jud McCranie, Feb 07 2016

Keywords

Examples

			50650 = 37^3-3 = 50651^1-1.
		

Crossrefs

See A268595 for values of p and A268596 for values of q.
Cf. A178251.

Programs

  • PARI
    is(n)=my(p);sum(e=1,logint(n,2)+1,ispower(n+e,e,&p)&&isprime(p))>1 \\ Charles R Greathouse IV, Feb 08 2016
    
  • PARI
    list(lim)=my(v=List([2]),q,n); for(e=3,logint(1+lim\=1,2), forprime(p=2, sqrtnint(lim+e,e), if(sum(i=1,e-1, n=p^e-e; ispower(n+i,i,&q) && isprime(q)), listput(v,n)))); Set(v) \\ Charles R Greathouse IV, Feb 08 2016

A268036 Cubes of the prime factors (with multiplicity) of n add up to n.

Original entry on oeis.org

1096744, 2836295, 4473671462, 23040925705, 13579716377989, 119429556097859
Offset: 1

Views

Author

Jud McCranie, Jan 24 2016

Keywords

Comments

a(1) = A068916(3).
13579716377989 and 119429556097859 are also terms, but it is not known if they are the next ones. - Jud McCranie, Feb 09 2016

Examples

			1096744 = 2^3 * 11^3 * 103 = 2^3+2^3+2^3+11^3+11^3+11^3+103^3.
		

Crossrefs

Cf. A068916, A067688 (a more inclusive sequence), A058041.

Programs

  • PARI
    isok(n) = {my(f = factor(n)); sum(k=1, #f~, f[k,1]^3*f[k, 2]) == n;} \\ Michel Marcus, Feb 09 2016

Extensions

a(5) from Jud McCranie, Feb 13 2016
a(6) from Jud McCranie, Mar 20 2016

A318606 Numbers of the form p^k-k for some prime, p, and integer k >= 0.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 10, 12, 16, 18, 22, 23, 24, 27, 28, 30, 36, 40, 42, 46, 47, 52, 58, 60, 66, 70, 72, 77, 78, 82, 88, 96, 100, 102, 106, 108, 112, 119, 121, 122, 126, 130, 136, 138, 148, 150, 156, 162, 166, 167, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 248, 250, 256, 262
Offset: 1

Views

Author

Jud McCranie, Aug 29 2018

Keywords

Examples

			2^7-7=121, so 121 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 265}, Union@ Flatten@ Table[p^k - k, {p, Prime@ Range@ PrimePi@ nn}, {k, Log[p, nn]}]] (* Michael De Vlieger, Jul 16 2019 *)
Showing 1-4 of 4 results.