cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068922 Number of ways to tile a 3 X 2n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

3, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068928 for incongruent tilings, A068920 for more info. First column of A272472.
Essentially the same as A006355.
Essentially the same as A078642. - Georg Fischer, Oct 06 2018

Programs

  • GAP
    Concatenation([3],List([2..40],n->2*Fibonacci(n+1))); # Muniru A Asiru, Oct 07 2018
  • Magma
    [3] cat [2*Fibonacci(n+1): n in [2..50]]; // Vincenzo Librandi, Oct 07 2018
    
  • Maple
    with(combinat): 3,seq(2*fibonacci(n+1),n=2..40); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Join[{3}, Table[2 Fibonacci[n + 1], {n, 2, 50}]] (* Vincenzo Librandi, Oct 07 2018 *)
    CoefficientList[Series[(x^2-x-3) / (x^2+x-1), {x, 0, 50}], x] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    Vec(x*(3+x-x^2) / (1-x-x^2) + O(x^50)) \\ Colin Barker, Jan 29 2017
    

Formula

For n >= 2, a(n) = 2*F(n+1), where F(n)=A000045(n) is the n-th Fibonacci number.
G.f.: x*(x^2-x-3) / (x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
From Colin Barker, Jan 29 2017: (Start)
a(n) = (2^(-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) for n>1.
a(n) = a(n-1) + a(n-2) for n>3. (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2 + x. - Stefano Spezia, Apr 18 2022