cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068934 Triangular array C(n, r) = number of connected r-regular graphs with n nodes, 0 <= r < n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 5, 6, 3, 1, 1, 0, 0, 1, 0, 16, 0, 4, 0, 1, 0, 0, 1, 19, 59, 60, 21, 5, 1, 1, 0, 0, 1, 0, 265, 0, 266, 0, 6, 0, 1, 0, 0, 1, 85, 1544, 7848, 7849, 1547, 94, 9, 1, 1, 0, 0, 1, 0, 10778, 0, 367860, 0
Offset: 1

Views

Author

David Wasserman, Mar 08 2002

Keywords

Comments

A graph is called r-regular if every node has exactly r edges. The numbers in this table were copied from the column sequences.
This sequence can be derived from A051031 by inverse Euler transform. See the comments in A051031 for a brief description of how that sequence can be computed without generating all regular graphs. - Andrew Howroyd, Mar 13 2020

Examples

			01: 1;
02: 0, 1;
03: 0, 0, 1;
04: 0, 0, 1, 1;
05: 0, 0, 1, 0, 1;
06: 0, 0, 1, 2, 1, 1;
07: 0, 0, 1, 0, 2, 0, 1;
08: 0, 0, 1, 5, 6, 3, 1, 1;
09: 0, 0, 1, 0, 16, 0, 4, 0, 1;
10: 0, 0, 1, 19, 59, 60, 21, 5, 1, 1;
11: 0, 0, 1, 0, 265, 0, 266, 0, 6, 0, 1;
12: 0, 0, 1, 85, 1544, 7848, 7849, 1547, 94, 9, 1, 1;
13: 0, 0, 1, 0, 10778, 0, 367860, 0, 10786, 0, 10, 0, 1;
14: 0, 0, 1, 509, 88168, 3459383, 21609300, 21609301, 3459386, 88193, 540, 13, 1, 1;
15: 0, 0, 1, 0, 805491, 0, 1470293675, 0, 1470293676, 0, 805579, 0, 17, 0, 1;
16: 0, 0, 1, 4060, 8037418, 2585136675, 113314233808, 733351105934, 733351105935, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

Connected regular simple graphs: A005177 (any degree -- sum of rows), this sequence (triangular array), specified degree r (columns): A002851 (r=3), A006820 (r=4), A006821 (r=5), A006822 (r=6), A014377 (r=7), A014378 (r=8), A014381 (r=9), A014382 (r=10), A014384 (r=11).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: this sequence (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: A186733 (g=3), A186734 (g=4).

Formula

C(n, r) = A051031(n, r) - A068933(n, r).
Column k is the inverse Euler transform of column k of A051031. - Andrew Howroyd, Mar 10 2020

Extensions

Edited by Jason Kimberley, Sep 23 2009, Nov 2011, Jan 2012, and Mar 2012