A068939 a(n) = Bell(n^2), where Bell(n) are the Bell numbers, cf. A000110.
1, 1, 15, 21147, 10480142147, 4638590332229999353, 3819714729894818339975525681317, 10726137154573358400342215518590002633917247281
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..20
Crossrefs
Cf. A000110.
Programs
-
Magma
[Bell(n^2): n in [0..8]]; // Vincenzo Librandi, Jul 16 2013
-
Mathematica
Table[BellB[n^2], {n, 0, 8}] (* Vincenzo Librandi, Jul 16 2013 *)
-
PARI
for(n=0,50,print1(round(sum(i=0,1000,i^(n^2)/(i)!)/exp(1)),","))
-
Python
from sympy import bell def A068939(n): return bell(n**2) # Chai Wah Wu, Jun 22 2022
Formula
a(n) = exp(-1)*Sum(k=>0, k^(n^2)/k!). - Benoit Cloitre, May 19 2002
Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*(sum(exp(-ln(x)^2/ (4*ln(k)))/(k!*sqrt(ln(k))), k=2..infinity)/ (2*exp(1)*sqrt(Pi)*x) +Dirac(1-x)/exp(1)), x=0..infinity), n=0, 1, ...