cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249941 E.g.f.: Sum_{n>=0} exp(n^3*x) / 2^(n+1).

Original entry on oeis.org

1, 13, 4683, 7087261, 28091567595, 230283190977853, 3385534663256845323, 81124824998504073881821, 2958279121074145472650648875, 155897763918621623249276226253693, 11403568794011880483742464196184901963, 1120959742203056268267494209293006882589981
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2014

Keywords

Comments

Number of ordered partitions of 3*n.

Examples

			E.g.f.: A(x) = 1 + 13*x + 4683*x^2/2! + 7087261*x^3/3! + 28091567595*x^4/4! +...
where the e.g.f. equals the infinite series:
A(x) = 1/2 + exp(x)/2^2 + exp(8*x)/2^3 + exp(27*x)/2^4 + exp(64*x)/2^5 + exp(125*x)/2^6 + exp(216*x)/2^7 + exp(343*x)/2^8 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k! * StirlingS2[3*n, k],{k,0,3*n}],{n,0,20}] (* Vaclav Kotesovec, May 04 2015 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; a[n_] := Fubini[3n, 1]; a[0] = 1; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Mar 30 2016 *)
  • PARI
    /* E.g.f.: Sum_{n>=0} exp(n^3*x)/2^(n+1) */
    \p100 \\ set precision
    {a(n) = round( n!*polcoeff(sum(m=0,600,exp(m^3*x +x*O(x^n))/2^(m+1)*1.),n) )}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n) = sum(k=0, 3*n, k! * stirling(3*n, k, 2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n) = if(n==0,1, sum(k=1,(3*n+1)\2, (2*k-1)! * stirling(3*n+1, 2*k, 2)))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..3*n} k! * Stirling2(3*n, k) for n>=0.
a(n) = Sum_{k=1..[(3*n+1)/2]} (2*k-1)! * Stirling2(3*n+1, 2*k) for n>0 with a(0)=1.
a(n) = A000670(3*n), where A000670 is the Fubini numbers.
a(n) ~ (3*n)! / (2 * (log(2))^(3*n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = Sum_{k>=0} k^(3*n) / 2^(k + 1). - Ilya Gutkovskiy, Dec 19 2019

A374514 Number of n X n matrices whose values cover an initial interval of positive integers and whose rows and columns have values which are strictly increasing.

Original entry on oeis.org

1, 1, 3, 197, 732963, 289599115433, 19454710000290140631, 324252739440855086589750626125, 1839663535877691613435674541258128354870051, 4664717625821787781559533555514908690826684467996898799881, 6714190347498763079980307954946450922919624466513063316268554904936722083543
Offset: 0

Views

Author

Andrew Howroyd, Sep 16 2024

Keywords

Examples

			The a(2) = 3 matrices are:
  [1 2]    [1 2]    [1 3]
  [2 3]    [3 4]    [2 4]
		

Crossrefs

Main diagonal of A374985.
Cf. A039622 (case all values also distinct), A068942, A376162 (case for symmetric matrices).

Programs

  • PARI
    \\ See Links section for program file.
    vector(8, n, A374514(n-1))
Showing 1-2 of 2 results.