cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068976 a(n) = Sum_{d | n} d/core(d) where core(x) is the smallest number such that x*core(x) is a square.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 10, 11, 4, 2, 12, 2, 4, 4, 26, 2, 22, 2, 12, 4, 4, 2, 20, 27, 4, 20, 12, 2, 8, 2, 42, 4, 4, 4, 66, 2, 4, 4, 20, 2, 8, 2, 12, 22, 4, 2, 52, 51, 54, 4, 12, 2, 40, 4, 20, 4, 4, 2, 24, 2, 4, 22, 106, 4, 8, 2, 12, 4, 8, 2, 110, 2, 4, 54, 12, 4, 8, 2, 52, 101, 4, 2, 24, 4, 4, 4
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

More generally, a(n,m) = Sum_{d divides n} gcd(d,n/d)^m is multiplicative with a(p^e,m) = (p^(m*e/2)*(p^m+1)-2)/(p^m-1) if e is even else 2*(p^(m*(e+1)/2)-1)/(p^m-1). - Vladeta Jovovic, May 30 2003

Crossrefs

Programs

  • Maple
    R:= proc(n) uses numtheory; local K,k;
      K:= select(k -> (n mod k^2 = 0), divisors(n));
      add(k^2*2^nops(factorset(n/k^2)),k=K);
    end proc:
    seq(R(n),n=1..100); # Robert Israel, Oct 18 2015
  • Mathematica
    a[n_]:=Total[GCD[#, n/#]^2 & /@ Divisors[n]]; Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Jul 26 2011 *)
    f[p_, e_] := If[OddQ[e], 2*(p^(e+1)-1)/(p^2-1), (p^(e+2)+p^e-2)/(p^2-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 03 2020 *)

Formula

a(n) = Sum_{d divides n} gcd(d, n/d)^2. Multiplicative with a(p^e) = (p^(e+2)+p^e-2)/(p^2-1) if e is even else 2*(p^(e+1)-1)/(p^2-1). - Vladeta Jovovic, May 30 2003
Dirichlet g.f.: zeta^2(s)*zeta(2s-2)/zeta(2s). Dirichlet convolution of A034444 and the sequence n*A010052(n). - R. J. Mathar, Apr 18 2011
Inverse Mobius transform of A008833. - R. J. Mathar, Oct 31 2011
a(n) = Sum_{d divides n} (-1)^A001222(d) * A000010(d) * A000203(n/d) = Sum_{k^2 divides n} k^2 * 2^A001221(n/k^2). - Robert Israel, Oct 18 2015
Sum_{k=1..n} a(k) ~ Zeta(3/2)^2 * n^(3/2) / (3*Zeta(3)) - (3*n*(log(n) - 1 + 2*gamma + 2*log(2*Pi) - 12*Zeta'(2)/Pi^2))/Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 05 2019
a(2^k) = (3/2)*2^k + (1/6)*(-2)^k - 2/3 = A061547(k+2). - Amiram Eldar, Sep 03 2020