cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069144 Numbers k such that A068976(k) divides k.

Original entry on oeis.org

1, 2, 12, 40, 120, 208, 280, 396, 440, 520, 624, 672, 680, 760, 920, 1040, 1160, 1240, 1456, 1480, 1640, 1720, 1880, 2120, 2288, 2360, 2440, 2680, 2840, 2920, 3120, 3160, 3320, 3360, 3392, 3536, 3560, 3880, 3952, 3960, 4040, 4120, 4280, 4360, 4368, 4520
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

For n > 4 A068976(a(n)) >= 40 and almost all terms k in the sequence are such that A068976(k) = 40.

Crossrefs

Cf. A068976.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 2*(p^(e + 1) - 1)/(p^2 - 1), (p^(e + 2) + p^e - 2)/(p^2 - 1)]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[5000], Divisible[#, s[#]] &] (* Amiram Eldar, Sep 03 2020 *)
  • PARI
    for(n=1,10000,if(n%sumdiv(n,d,d/core(d))==0,print1(n,",")))

A069265 Numbers k such that Sum_{d|k} d/core(d) > k, where core(d) is the squarefree part of d.

Original entry on oeis.org

4, 8, 9, 16, 18, 25, 32, 36, 48, 49, 50, 64, 72, 81, 98, 100, 108, 121, 128, 144, 162, 169, 192, 196, 200, 225, 242, 256, 288, 289, 300, 324, 338, 361, 392, 400, 432, 441, 450, 484, 512, 529, 576, 578, 588, 625, 648, 676, 722, 729, 768, 784, 800, 841, 882, 900
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 2*(p^(e + 1) - 1)/(p^2 - 1), (p^(e + 2) + p^e - 2)/(p^2 - 1)]; Select[Range[2, 1000], Times @@ (f @@@ FactorInteger[#]) > # &] (* Amiram Eldar, Sep 03 2020 *)

Formula

k such that A068976(k) > k.

A069266 Numbers k such that Sum_{d|k} d/core(d) > 2*k, where core(d) is the squarefree part of d.

Original entry on oeis.org

576, 1296, 2304, 3600, 5184, 7056, 8100, 9216, 11664, 14400, 17424, 20736, 24336, 28224, 32400, 36864, 44100, 46656, 57600, 63504, 69696, 72900, 82944, 90000, 97344, 104976, 108900, 112896, 129600, 147456, 152100, 156816, 166464, 176400, 186624, 202500, 207936
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

All terms <= 10^17 are squares. Are there any nonsquare terms? - David A. Corneth, Sep 05 2020
All the terms are squares. Proof: Let f(n) = A068976(n)/n. f(n) is multiplicative with f(p^e) = (p^2 + 1 - 2/p^e)/(p^2-1) if e is even and 2*(p - 1/p^e)/(p^2-1) if e is odd. Both are strictly increasing with e, the limits as e -> oo are f_even(p) = (p^2+1)/(p^2-1) and f_odd(p) = 2*p/(p^2-1), respectively, and f_odd(p) < f_even(p) for all primes p. The upper bound on f(n) is being attained at even exponents: f(n) < lim_{e->oo} Product_{p prime} (p^2 + 1 - 2/p^e)/(p^2-1) = Product_{p prime} f_even(p) = 5/2. If k is not a square, then there is at least one prime q|k with an odd exponent. Replacing the factor f_even(q) with f_odd(q) in the infinite product, we get f(k) < (5/2) * f_odd(q)/f_even(q) = 5*q/(q^2+1) <= 2. Therefore, A068976(k) = f(k) * k < 2*k and k is not a term. - Amiram Eldar, Feb 11 2024

Examples

			3600 is in the sequence as its divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, ..., 400, 450, 600, 720, 900, 1200, 1800, 3600 and the respective values d/core(d) are 1, 1, 1, 4, 1, 1, 4, 9, ... , 900, 400, 900, 3600. The sum of this latter list is 7722 which is greater than 2*3600. - _David A. Corneth_, Sep 05 2020
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 2*(p^(e + 1) - 1)/(p^2 - 1), (p^(e + 2) + p^e - 2)/(p^2 - 1)]; Select[Range[2, 150000], Times @@ (f @@@ FactorInteger[#]) > 2*# &] (* Amiram Eldar, Sep 05 2020 *)
  • PARI
    is(n) = sumdiv(n, d, d/core(d)) > n << 1 \\ David A. Corneth, Sep 05 2020

Formula

Numbers k such that A068976(k) > 2*k.

Extensions

More terms from Amiram Eldar, Sep 05 2020

A198286 a(n) = Sum_{d|n} (A053143(d) or smallest square divisible by d).

Original entry on oeis.org

1, 5, 10, 9, 26, 50, 50, 25, 19, 130, 122, 90, 170, 250, 260, 41, 290, 95, 362, 234, 500, 610, 530, 250, 51, 850, 100, 450, 842, 1300, 962, 105, 1220, 1450, 1300, 171, 1370, 1810, 1700, 650, 1682, 2500, 1850, 1098, 494, 2650, 2210, 410, 99, 255, 2900, 1530, 2810
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2011

Keywords

Comments

Multiplicative function with a(p^e) = 1+2*(p^(e+2)-p^2)/(p^2-1) if e is even else a(p^e)=(1+p^2)((p^(e+1)-1)/(p^2-1)). Examples: a(9)=a(3^2)=1+2*((81-9)/(9-1))=1+2*9=19; a(8)=a(2^3)=(1+4)((16-1)/(4-1))=5*5=25.
Another definition of a(n): Sum_{d|n} (d*core(d)), where core(d) is the squarefree part of d (A007913), i.e., inverse Mobius transform of A053143.

Examples

			a(18) = 95 because 18=2*3^2, so a(18) = (1+4)(1+9+9) = 5*19 = 95.
a(20) = 234 because 20=2^2*5, so a(20) = (1+4+4)(1+25) = 9*26 = 234.
		

Crossrefs

Similar to A068976 (sum of square part of d) and A069088 (sum of squarefree part of d).

Programs

  • Mathematica
    ssq[n_] := For[k=1, True, k++, If[ Divisible[s = k^2, n], Return[s]]]; a[n_] := Sum[ ssq[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 53}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := If[OddQ[e], (1+p^2)((p^(e+1)-1)/(p^2-1)), 1+2*(p^(e+2)-p^2)/(p^2-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 53] (* Amiram Eldar, Sep 05 2020 *)
  • PARI
    a(n)=sumdiv(n,d,d*core(d)) \\ Charles R Greathouse IV, Oct 30 2011

Formula

Dirichlet g.f.: zeta(s)*zeta(s-2)*zeta(2s-2)/zeta(2s-4). - R. J. Mathar, Mar 12 2012
Sum_{k=1..n} a(k) ~ Pi^2 * Zeta(3) * n^3 / 45. - Vaclav Kotesovec, Feb 02 2019
Showing 1-4 of 4 results.