cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068978 Numbers k such that Sum_{d|k} tau(d)/d is an integer, where tau(x) = A000005(x).

Original entry on oeis.org

1, 2, 9, 18, 105, 210, 24375, 48750, 133848, 18780741, 18780965, 37561482, 37561930, 121486365, 169028685, 242972730, 338057370, 360988056, 676114740, 1120584213, 1285201500, 1352229480, 2241168426, 2776831200, 5352575025, 5408917920, 7437262140, 10705150050
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Also k such that k divides A007429(k).
Also k such that k divides A211780(k). - Jaroslav Krizek, Sep 28 2014
a(28) > 10^10. - Giovanni Resta, Jun 10 2013
a(33) > 5*10^10. - Hiroaki Yamanouchi, Oct 05 2014

Crossrefs

Programs

  • Mathematica
    t = {}; n = 0; While[n++ <= 20000000, If[Mod[Total[DivisorSigma[1, Divisors[n]]], n] == 0, AppendTo[t, n]]]; t (* Jayanta Basu, Apr 03 2013 *)
    f[p_, e_] := (p*(p^(e+1) - 1) - (p-1)*(e+1))/(p-1)^2; q[1] = True; q[k_] := Divisible[Times @@ f @@@ FactorInteger[k], k]; Select[Range[200000], q] (* Amiram Eldar, Apr 19 2025 *)
  • PARI
    for(n=1, 20000000, if(denominator( sumdiv(n,d, numdiv(d)/d)) ==1, print1(n,",")))
    
  • PARI
    isok(k) = {my(f = factor(k)); !(prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p*(p^(e+1) - 1) - (p-1)*(e+1))/(p-1)^2) % k);} \\ Amiram Eldar, Apr 19 2025

Extensions

More terms from Rick L. Shepherd, Jun 23 2002
a(12)-a(27) from Giovanni Resta, Jun 10 2013
a(28) from Hiroaki Yamanouchi, Oct 05 2014