A226564 Numbers k such that sum(d|k, sigma(d)^2/d) is an integer, where d are the divisors of k.
1, 205, 3895, 8525, 17050, 71951, 74005, 148010, 359755, 451825, 903650, 1628110, 1632005, 1798775, 2346674, 3597550, 4218285, 8436570, 8993875, 14749955, 17987750, 50471410, 59071771, 92802270, 95335075, 190670150, 280249145, 295358855, 451356495, 481068170
Offset: 1
Examples
Divisors of 71951 are 1, 11, 31, 211, 341, 2321, 6541, 71951. sigma(1) = 1, sigma(11) = 12, sigma(31) = 32, sigma(211) = 212, sigma(341) = 384, sigma(2321) = 2544, sigma(6541) = 6784, sigma(71951) = 81408. (1^2/1 + 12^2/11 + 32^2/31 + 212^2/211 + 384^2/341 + 2544^2/2321 + 6784^2/6541 + 81408^2/71951) = 102625.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..34 (terms < 2*10^9)
Programs
Extensions
a(12)-a(30) from Giovanni Resta, Jun 11 2013
Comments